Is $lim_{ntoinfty}int_0^1f_n(x)=int_0^1f(x)$ in this case?











up vote
0
down vote

favorite












Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question






















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday















up vote
0
down vote

favorite












Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question






















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday













up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?










share|cite|improve this question













Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$



This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.



I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?







calculus real-analysis sequences-and-series definite-integrals uniform-convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Learner

1326




1326












  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday


















  • I edited out a few typos in the definition of $f$
    – Learner
    yesterday
















I edited out a few typos in the definition of $f$
– Learner
yesterday




I edited out a few typos in the definition of $f$
– Learner
yesterday










3 Answers
3






active

oldest

votes

















up vote
1
down vote



accepted










You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






share|cite|improve this answer




























    up vote
    1
    down vote













    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






    share|cite|improve this answer




























      up vote
      1
      down vote













      $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
      $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



      The result follows.






      share|cite|improve this answer





















        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














         

        draft saved


        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995293%2fis-lim-n-to-infty-int-01f-nx-int-01fx-in-this-case%23new-answer', 'question_page');
        }
        );

        Post as a guest
































        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        1
        down vote



        accepted










        You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



        $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



        Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



        we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






        share|cite|improve this answer

























          up vote
          1
          down vote



          accepted










          You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



          $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



          Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



          we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






          share|cite|improve this answer























            up vote
            1
            down vote



            accepted







            up vote
            1
            down vote



            accepted






            You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



            $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



            Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



            we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$






            share|cite|improve this answer












            You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,



            $$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$



            Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$



            we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            LeB

            733217




            733217






















                up vote
                1
                down vote













                Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                share|cite|improve this answer

























                  up vote
                  1
                  down vote













                  Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                  share|cite|improve this answer























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem






                    share|cite|improve this answer












                    Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered yesterday









                    MotylaNogaTomkaMazura

                    6,221917




                    6,221917






















                        up vote
                        1
                        down vote













                        $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                        $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                        The result follows.






                        share|cite|improve this answer

























                          up vote
                          1
                          down vote













                          $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                          $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                          The result follows.






                          share|cite|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                            $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                            The result follows.






                            share|cite|improve this answer












                            $f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
                            $$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$



                            The result follows.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered yesterday









                            Fnacool

                            4,856511




                            4,856511






























                                 

                                draft saved


                                draft discarded



















































                                 


                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995293%2fis-lim-n-to-infty-int-01f-nx-int-01fx-in-this-case%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest




















































































                                Popular posts from this blog

                                How to change which sound is reproduced for terminal bell?

                                Can I use Tabulator js library in my java Spring + Thymeleaf project?

                                Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents