Is $lim_{ntoinfty}int_0^1f_n(x)=int_0^1f(x)$ in this case?
up vote
0
down vote
favorite
Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$
This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.
I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?
calculus real-analysis sequences-and-series definite-integrals uniform-convergence
add a comment |
up vote
0
down vote
favorite
Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$
This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.
I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?
calculus real-analysis sequences-and-series definite-integrals uniform-convergence
I edited out a few typos in the definition of $f$
– Learner
yesterday
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$
This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.
I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?
calculus real-analysis sequences-and-series definite-integrals uniform-convergence
Let $f_n(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft[1/n,1right]\ 0 &xin(-infty,1/n)cup(1,+infty)end{cases}.$
This converges to $f(x)=begin{cases}frac{e^{x^2}}{x^2} &xinleft(0,1right]\ 0 &xin(-infty,0]cup(1,+infty)end{cases}$ pointwise on $Bbb R$ and uniformly on $(-infty,-varepsilon]cup[varepsilon,+infty)$ for every $varepsilon>0$.
I'm then asked to find $lim_{ntoinfty}int_0^1f_n(x)dx$, and I think the following holds: $$lim_{ntoinfty}int_0^1f_n(x)dx=lim_{ntoinfty}int_0^{1/n}0+lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}dx=lim_{ntoinfty}int_{1/n}^1frac{e^{x^2}}{x^2}=int_{0}^1frac{e^{x^2}}{x^2}=+infty.$$Am I correct?
calculus real-analysis sequences-and-series definite-integrals uniform-convergence
calculus real-analysis sequences-and-series definite-integrals uniform-convergence
asked yesterday
Learner
1326
1326
I edited out a few typos in the definition of $f$
– Learner
yesterday
add a comment |
I edited out a few typos in the definition of $f$
– Learner
yesterday
I edited out a few typos in the definition of $f$
– Learner
yesterday
I edited out a few typos in the definition of $f$
– Learner
yesterday
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,
$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$
Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$
we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$
add a comment |
up vote
1
down vote
Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem
add a comment |
up vote
1
down vote
$f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
$$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$
The result follows.
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,
$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$
Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$
we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$
add a comment |
up vote
1
down vote
accepted
You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,
$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$
Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$
we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,
$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$
Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$
we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$
You are correct. Also, you can use Dominated convergence Theorem with the Dominant function $f$ observing that $|f_n(x)|leq |f(x)|$ $forall n$ $forall x$ since $$frac{e^{x^2}}{x^2}geq 0 hspace{2mm}forall xin (0,1].$$ Thus, by the Dominated convergence theorem,
$$lim_{nrightarrow infty}int f_n=int lim_{nrightarrow infty}f_n =int f =int_{(0,1]}frac{e^{x^2}}{x^2}.$$
Since $$ +infty=int_{(0,1]}frac{1}{x^2}leq int_{(0,1]}frac{e^{x^2}}{x^2}, $$
we have $$lim_{nrightarrow infty}int f_n=int_{(0,1]}frac{e^{x^2}}{x^2}=+infty.$$
answered yesterday
LeB
733217
733217
add a comment |
add a comment |
up vote
1
down vote
Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem
add a comment |
up vote
1
down vote
Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem
add a comment |
up vote
1
down vote
up vote
1
down vote
Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem
Yes it is true. This follows from Beppo Levi's monotone convergence theorem for Lebesgue integral here: https://en.wikipedia.org/wiki/Monotone_convergence_theorem
answered yesterday
MotylaNogaTomkaMazura
6,221917
6,221917
add a comment |
add a comment |
up vote
1
down vote
$f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
$$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$
The result follows.
add a comment |
up vote
1
down vote
$f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
$$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$
The result follows.
add a comment |
up vote
1
down vote
up vote
1
down vote
$f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
$$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$
The result follows.
$f_n(x) ge frac{1}{x^2}$ on $[1/n,1]$ and by positivity of Riemann integral
$$ int_0^1 f_n(x) dx = int_{1/n}^1 frac{e^{x^2}}{x^2} dx ge int_{1/n}^1 frac{1}{x^2} dx = n-1.$$
The result follows.
answered yesterday
Fnacool
4,856511
4,856511
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995293%2fis-lim-n-to-infty-int-01f-nx-int-01fx-in-this-case%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I edited out a few typos in the definition of $f$
– Learner
yesterday