Radius of convergence of power series $displaystyle sum_{n=1}^{infty}frac{x^{6n+2}}{(1+frac{1}{n})^{n^2}}$











up vote
2
down vote

favorite
1













Find radius of convergence of $displaystyle sum_{n=1}^{infty}frac{x^{6n+2}}{(1+frac{1}{n})^{n^2}}$.




My try:



Using Cauchy's Root test for convergence $displaystyle lim_nsup sqrt[n]{|a_n|}|(z-c)|<1$, we get



$displaystyle lim_nsup sqrt[n]{|frac{1}{Big(1+frac{1}{n}Big)^{n^2}}|},|x^6|<1implies lim_nsup frac{1}{Big(1+frac{1}{n}Big)^{n}}|x|^6<1$. Hence $|x|^6<{e}$ or



the interval of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$ and radius of convergence is $2e^frac{1}{6}$. Am I correct ??










share|cite|improve this question


























    up vote
    2
    down vote

    favorite
    1













    Find radius of convergence of $displaystyle sum_{n=1}^{infty}frac{x^{6n+2}}{(1+frac{1}{n})^{n^2}}$.




    My try:



    Using Cauchy's Root test for convergence $displaystyle lim_nsup sqrt[n]{|a_n|}|(z-c)|<1$, we get



    $displaystyle lim_nsup sqrt[n]{|frac{1}{Big(1+frac{1}{n}Big)^{n^2}}|},|x^6|<1implies lim_nsup frac{1}{Big(1+frac{1}{n}Big)^{n}}|x|^6<1$. Hence $|x|^6<{e}$ or



    the interval of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$ and radius of convergence is $2e^frac{1}{6}$. Am I correct ??










    share|cite|improve this question
























      up vote
      2
      down vote

      favorite
      1









      up vote
      2
      down vote

      favorite
      1






      1






      Find radius of convergence of $displaystyle sum_{n=1}^{infty}frac{x^{6n+2}}{(1+frac{1}{n})^{n^2}}$.




      My try:



      Using Cauchy's Root test for convergence $displaystyle lim_nsup sqrt[n]{|a_n|}|(z-c)|<1$, we get



      $displaystyle lim_nsup sqrt[n]{|frac{1}{Big(1+frac{1}{n}Big)^{n^2}}|},|x^6|<1implies lim_nsup frac{1}{Big(1+frac{1}{n}Big)^{n}}|x|^6<1$. Hence $|x|^6<{e}$ or



      the interval of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$ and radius of convergence is $2e^frac{1}{6}$. Am I correct ??










      share|cite|improve this question














      Find radius of convergence of $displaystyle sum_{n=1}^{infty}frac{x^{6n+2}}{(1+frac{1}{n})^{n^2}}$.




      My try:



      Using Cauchy's Root test for convergence $displaystyle lim_nsup sqrt[n]{|a_n|}|(z-c)|<1$, we get



      $displaystyle lim_nsup sqrt[n]{|frac{1}{Big(1+frac{1}{n}Big)^{n^2}}|},|x^6|<1implies lim_nsup frac{1}{Big(1+frac{1}{n}Big)^{n}}|x|^6<1$. Hence $|x|^6<{e}$ or



      the interval of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$ and radius of convergence is $2e^frac{1}{6}$. Am I correct ??







      sequences-and-series proof-verification power-series alternative-proof






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      Yadati Kiran

      467




      467






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          That the intervall of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$, is correct. But the radius of convergence is $e^frac{1}{6}$.






          share|cite|improve this answer





















          • ok yeah ! I calculated the length of the interval. Thanks @Fred.
            – Yadati Kiran
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995304%2fradius-of-convergence-of-power-series-displaystyle-sum-n-1-infty-fracx%23new-answer', 'question_page');
          }
          );

          Post as a guest
































          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          That the intervall of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$, is correct. But the radius of convergence is $e^frac{1}{6}$.






          share|cite|improve this answer





















          • ok yeah ! I calculated the length of the interval. Thanks @Fred.
            – Yadati Kiran
            yesterday















          up vote
          1
          down vote



          accepted










          That the intervall of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$, is correct. But the radius of convergence is $e^frac{1}{6}$.






          share|cite|improve this answer





















          • ok yeah ! I calculated the length of the interval. Thanks @Fred.
            – Yadati Kiran
            yesterday













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          That the intervall of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$, is correct. But the radius of convergence is $e^frac{1}{6}$.






          share|cite|improve this answer












          That the intervall of convergence is $displaystyle Big(-e^frac{1}{6},e^frac{1}{6}Big)$, is correct. But the radius of convergence is $e^frac{1}{6}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          Fred

          41.5k1641




          41.5k1641












          • ok yeah ! I calculated the length of the interval. Thanks @Fred.
            – Yadati Kiran
            yesterday


















          • ok yeah ! I calculated the length of the interval. Thanks @Fred.
            – Yadati Kiran
            yesterday
















          ok yeah ! I calculated the length of the interval. Thanks @Fred.
          – Yadati Kiran
          yesterday




          ok yeah ! I calculated the length of the interval. Thanks @Fred.
          – Yadati Kiran
          yesterday


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995304%2fradius-of-convergence-of-power-series-displaystyle-sum-n-1-infty-fracx%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?