How does rotational “artificial gravity” differ from normal gravity?











up vote
31
down vote

favorite
7












I am not a physicist, just a curious mind. I was reading a novel by Iain Banks where it was mentioned, that shifting from artificial rotational "gravity" (in space, on a rotating space craft) to real gravity caused some level of discomfort.



And this has me thinking; is there any truth to that? I mean I am aware that reading a science fiction novel does not science make; however it also strikes me as an unlikely story line to inject in there if it was not founded on at least some real theory or actual reality.



So I guess it boils down to this. From the perspective of the individual experiencing it, is there any notable difference from being rotated and thereby experiencing a sensation of gravity, to a person experiencing real gravity (from the attraction of mass)?










share|cite|improve this question









New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • I deleted some off-topic comments.
    – David Z
    21 hours ago






  • 1




    How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
    – Acccumulation
    5 hours ago










  • Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
    – Matthew Elvey
    3 hours ago

















up vote
31
down vote

favorite
7












I am not a physicist, just a curious mind. I was reading a novel by Iain Banks where it was mentioned, that shifting from artificial rotational "gravity" (in space, on a rotating space craft) to real gravity caused some level of discomfort.



And this has me thinking; is there any truth to that? I mean I am aware that reading a science fiction novel does not science make; however it also strikes me as an unlikely story line to inject in there if it was not founded on at least some real theory or actual reality.



So I guess it boils down to this. From the perspective of the individual experiencing it, is there any notable difference from being rotated and thereby experiencing a sensation of gravity, to a person experiencing real gravity (from the attraction of mass)?










share|cite|improve this question









New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • I deleted some off-topic comments.
    – David Z
    21 hours ago






  • 1




    How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
    – Acccumulation
    5 hours ago










  • Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
    – Matthew Elvey
    3 hours ago















up vote
31
down vote

favorite
7









up vote
31
down vote

favorite
7






7





I am not a physicist, just a curious mind. I was reading a novel by Iain Banks where it was mentioned, that shifting from artificial rotational "gravity" (in space, on a rotating space craft) to real gravity caused some level of discomfort.



And this has me thinking; is there any truth to that? I mean I am aware that reading a science fiction novel does not science make; however it also strikes me as an unlikely story line to inject in there if it was not founded on at least some real theory or actual reality.



So I guess it boils down to this. From the perspective of the individual experiencing it, is there any notable difference from being rotated and thereby experiencing a sensation of gravity, to a person experiencing real gravity (from the attraction of mass)?










share|cite|improve this question









New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I am not a physicist, just a curious mind. I was reading a novel by Iain Banks where it was mentioned, that shifting from artificial rotational "gravity" (in space, on a rotating space craft) to real gravity caused some level of discomfort.



And this has me thinking; is there any truth to that? I mean I am aware that reading a science fiction novel does not science make; however it also strikes me as an unlikely story line to inject in there if it was not founded on at least some real theory or actual reality.



So I guess it boils down to this. From the perspective of the individual experiencing it, is there any notable difference from being rotated and thereby experiencing a sensation of gravity, to a person experiencing real gravity (from the attraction of mass)?







newtonian-mechanics newtonian-gravity reference-frames centrifugal-force






share|cite|improve this question









New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 9 hours ago









Qmechanic

99.2k121781104




99.2k121781104






New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









Mark Cassidy

25625




25625




New contributor




Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Mark Cassidy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • I deleted some off-topic comments.
    – David Z
    21 hours ago






  • 1




    How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
    – Acccumulation
    5 hours ago










  • Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
    – Matthew Elvey
    3 hours ago




















  • I deleted some off-topic comments.
    – David Z
    21 hours ago






  • 1




    How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
    – Acccumulation
    5 hours ago










  • Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
    – Matthew Elvey
    3 hours ago


















I deleted some off-topic comments.
– David Z
21 hours ago




I deleted some off-topic comments.
– David Z
21 hours ago




1




1




How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
– Acccumulation
5 hours ago




How was the shifting accomplished? It's not clear from what you're said whether there was some difference that caused discomfort, or whether it was the shifting itself that caused discomfort. Also, were the strengths equal? If you're on a spaceship designed to mimic Earth's gravity, and you go to a planet with more than Earth's gravity, that could cause discomfort. Or if you're on the upper levels of the spacecraft, then you would be experiencing less gravity, so going to full could cause discomfort.
– Acccumulation
5 hours ago












Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
– Matthew Elvey
3 hours ago






Good question. 3 pedantic points: on Earth, you are experiencing artificial rotational "gravity" forces. Because Earth is spinning. But that's negligible compared to what we normally consider as "normal gravity". (Also, Earth is rotating about the sun (and rotating about the center of the Milky Way...!))
– Matthew Elvey
3 hours ago












6 Answers
6






active

oldest

votes

















up vote
58
down vote













I think a rotating frame would have both a centrifugal force, mimicking gravity, and what is called a Coriolis force. So, for example, if you would throw a ball straight up in the air in the rotating space station, you would see it move sideways too, because the outside of a wheel always rotates faster than the inside.



It's possible that the people in the space station could feel this Coriolis force, hence the reason for the discomfort.






share|cite|improve this answer








New contributor




Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.














  • 3




    Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
    – Andrew Steane
    2 days ago






  • 10




    In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
    – Davis Yoshida
    2 days ago






  • 6




    Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
    – Jyrki Lahtonen
    yesterday








  • 8




    @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
    – UKMonkey
    yesterday






  • 2




    @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
    – Ryan Cavanaugh
    7 hours ago


















up vote
26
down vote













I'm speculating, but the speculation is based on actual physics :).



Your physical experience of gravity on a planet and artificial gravity at the outside of a rotating wheel might be different based on the following.



The force you feel from a planet is $G*m_{you}*M_{planet}/r^2$ (Gravitational constant times your mass times the mass of the planet, divided by the distance $r$ from you to the center of the planet, squared.



The force you feel from the rotating wheel is $m_{you}*omega^2r$ (your mass times the angular velocity (squared) times $r$, the distance from you to the center of the wheel).



So, suppose you are on a planet (which would normally have a very large value of $r$--meaning, you are a long way from its center), and you are seated, then you stand up. Your head has moved from $r$ meters to $r+1$ meters (your head is now 1 meter farther from the center of the planet). So, on earth, you've moved from about 6.4 million meters away to about 6.4 million meters...plus one! That's going to make a change in the force on your head that's probably way too small for you to notice.



On a man-made rotating wheel, you're going to have a much smaller value of $r$ (assuming the wheel is way less than the size of a planet). So $r-1$ meters (keep in mind, when you stand up inside the rotating wheel, your head is closer to the hub of the wheel, so it's a change to $r-1$ instead of $r+1$ as it would be on the planet) might be different enough from $r$ meters to be something you feel, and, if you spent a lot of time there, or were born there, or whatever, you would get used to things (like your head) being "lighter" when you stand up. If that was your "normal", then it might feel really strange to you when that didn't happen in Earth's gravity.






share|cite|improve this answer








New contributor




msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.














  • 1




    Isn't this why such craft have to be pretty large?
    – RonJohn
    yesterday






  • 7




    The term of art for the effects you're talking about is tidal forces.
    – Michael Seifert
    yesterday






  • 2




    @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
    – Luaan
    yesterday










  • You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
    – Yakk
    yesterday








  • 1




    @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
    – Ghedipunk
    5 hours ago


















up vote
8
down vote













For a non-technical answer, remember when you were a kid on the playground? (Yes, I know I'm making what's perhaps a parochial assumption.) If you sat on the merry-go-round (this: https://en.wikipedia.org/wiki/Roundabout_(play) ) and got the other kids to push it around really fast, you could feel the "gravity" pulling you outwards. But because you were also going around in a tight circle, the fluid in your ears sloshed around, and so you got dizzy.



Now scale this up to a moderately-sized space station. You might still have some effect on the ears from rotation (how much depends on the size), but because you've been there a long time, your body has adapted to this as being normal. When you shift to "real" gravity, the rotation effect goes away, but to your body this is now NOT normal.



(Whether this would actually happen I can't say: AFAIK no one has tried it, but it's certainly plausible enough for SF :-))






share|cite|improve this answer





















  • The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
    – Andrew Steane
    2 days ago






  • 3




    @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
    – Draco18s
    2 days ago






  • 8




    @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
    – trapper
    yesterday












  • Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
    – famargar
    4 hours ago


















up vote
5
down vote













You would be unlikely to notice any difference unless the spacecraft is fairly small.



For example with 50m radius there is only a 2% difference between 50m and 49m. The station in this case would be spinning at 4.25 rpm to generate 1G.






share|cite|improve this answer








New contributor




trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.














  • 6




    2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
    – Robert Frost
    18 hours ago










  • I can't even imagine what kind of math lead you to those conclusions.
    – trapper
    18 hours ago






  • 1




    Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
    – Robert Frost
    17 hours ago






  • 1




    You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
    – trapper
    17 hours ago






  • 1




    You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
    – Robert Frost
    15 hours ago


















up vote
1
down vote













Experiencing rotational forces and fixed direction gravity at the same time would be weird.



A person under the influence of gravity experiences a constant acceleration. A person in a rotating reference frame experiences a constant magnitude acceleration, but the direction is changing constantly.



This means that if you are experiencing both at once, and the axis of rotation is not parallel to the direction of gravity, the total acceleration that you feel will be constantly fluctuating. It's more or less equivalent to the fact that if you swing a bucket on a rope in a vertical circle, the tension in the rope is higher when the bucket is near the ground than when it is at the top of the swing.



Depending on how fast the rotation of your station is, this could make the transition period feel like a rollercoaster.



Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second. That would avoid the roller coaster effect. But if they skipped that process then I could easily see people emptying their stomachs during the process.






share|cite|improve this answer










New contributor




Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.














  • 2




    Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
    – Beta
    yesterday










  • @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
    – Arcanist Lupus
    yesterday






  • 3




    I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
    – amI
    yesterday






  • 1




    The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
    – msouth
    10 hours ago










  • "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
    – JiK
    2 hours ago


















up vote
-1
down vote













In my opinion there is mechanical difference in which the rotation affects you in those two cases (you rotate on planet while not on poles). On planets surface the mass pulls you inward and the planetary rotation lessens the force applied to you. On the station the rotation works the other way, basically creating gravity from nothing.



Have a nice day.






share|cite|improve this answer








New contributor




Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.

















    protected by ACuriousMind 5 hours ago



    Thank you for your interest in this question.
    Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).



    Would you like to answer one of these unanswered questions instead?














    6 Answers
    6






    active

    oldest

    votes








    6 Answers
    6






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    58
    down vote













    I think a rotating frame would have both a centrifugal force, mimicking gravity, and what is called a Coriolis force. So, for example, if you would throw a ball straight up in the air in the rotating space station, you would see it move sideways too, because the outside of a wheel always rotates faster than the inside.



    It's possible that the people in the space station could feel this Coriolis force, hence the reason for the discomfort.






    share|cite|improve this answer








    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 3




      Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
      – Andrew Steane
      2 days ago






    • 10




      In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
      – Davis Yoshida
      2 days ago






    • 6




      Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
      – Jyrki Lahtonen
      yesterday








    • 8




      @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
      – UKMonkey
      yesterday






    • 2




      @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
      – Ryan Cavanaugh
      7 hours ago















    up vote
    58
    down vote













    I think a rotating frame would have both a centrifugal force, mimicking gravity, and what is called a Coriolis force. So, for example, if you would throw a ball straight up in the air in the rotating space station, you would see it move sideways too, because the outside of a wheel always rotates faster than the inside.



    It's possible that the people in the space station could feel this Coriolis force, hence the reason for the discomfort.






    share|cite|improve this answer








    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 3




      Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
      – Andrew Steane
      2 days ago






    • 10




      In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
      – Davis Yoshida
      2 days ago






    • 6




      Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
      – Jyrki Lahtonen
      yesterday








    • 8




      @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
      – UKMonkey
      yesterday






    • 2




      @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
      – Ryan Cavanaugh
      7 hours ago













    up vote
    58
    down vote










    up vote
    58
    down vote









    I think a rotating frame would have both a centrifugal force, mimicking gravity, and what is called a Coriolis force. So, for example, if you would throw a ball straight up in the air in the rotating space station, you would see it move sideways too, because the outside of a wheel always rotates faster than the inside.



    It's possible that the people in the space station could feel this Coriolis force, hence the reason for the discomfort.






    share|cite|improve this answer








    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    I think a rotating frame would have both a centrifugal force, mimicking gravity, and what is called a Coriolis force. So, for example, if you would throw a ball straight up in the air in the rotating space station, you would see it move sideways too, because the outside of a wheel always rotates faster than the inside.



    It's possible that the people in the space station could feel this Coriolis force, hence the reason for the discomfort.







    share|cite|improve this answer








    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer






    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 2 days ago









    Eric David Kramer

    56113




    56113




    New contributor




    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    Eric David Kramer is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.








    • 3




      Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
      – Andrew Steane
      2 days ago






    • 10




      In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
      – Davis Yoshida
      2 days ago






    • 6




      Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
      – Jyrki Lahtonen
      yesterday








    • 8




      @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
      – UKMonkey
      yesterday






    • 2




      @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
      – Ryan Cavanaugh
      7 hours ago














    • 3




      Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
      – Andrew Steane
      2 days ago






    • 10




      In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
      – Davis Yoshida
      2 days ago






    • 6




      Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
      – Jyrki Lahtonen
      yesterday








    • 8




      @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
      – UKMonkey
      yesterday






    • 2




      @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
      – Ryan Cavanaugh
      7 hours ago








    3




    3




    Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
    – Andrew Steane
    2 days ago




    Nice answer. For an instructive homework exercise, try analysing various gravity-testing experiments, such as what happens when balls are dropped from a tall tower set up in a huge rotating space station whose rim rotates with acceleration 1$g$.
    – Andrew Steane
    2 days ago




    10




    10




    In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
    – Davis Yoshida
    2 days ago




    In an episode of the show "The Expanse", a phrase similar to "in the core where the Coriolis is really bad" is used.
    – Davis Yoshida
    2 days ago




    6




    6




    Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
    – Jyrki Lahtonen
    yesterday






    Wikipedia has dug out a rule of thumb (belief?) that at 2RPM or below the Coriolis force would be tolerable. 2RPM comes to about $0.2$ radians per second. Meaning that $1g$ or $10 m/s^2$ requires a station with a radius of $250$ meters.
    – Jyrki Lahtonen
    yesterday






    8




    8




    @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
    – UKMonkey
    yesterday




    @Dithermaster "So, much like changing eyeglasses - the discomfort isn't physical" it is absolutely physical, for both cases. Changing glasses results in the lens muscles having to work in different ways, which tires them. Having uneven forces on your body is also physical.
    – UKMonkey
    yesterday




    2




    2




    @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
    – Ryan Cavanaugh
    7 hours ago




    @Åsmund 10m/s is a dead sprint for a top athlete; most people aren't "walking" 5m/s 6-minute miles
    – Ryan Cavanaugh
    7 hours ago










    up vote
    26
    down vote













    I'm speculating, but the speculation is based on actual physics :).



    Your physical experience of gravity on a planet and artificial gravity at the outside of a rotating wheel might be different based on the following.



    The force you feel from a planet is $G*m_{you}*M_{planet}/r^2$ (Gravitational constant times your mass times the mass of the planet, divided by the distance $r$ from you to the center of the planet, squared.



    The force you feel from the rotating wheel is $m_{you}*omega^2r$ (your mass times the angular velocity (squared) times $r$, the distance from you to the center of the wheel).



    So, suppose you are on a planet (which would normally have a very large value of $r$--meaning, you are a long way from its center), and you are seated, then you stand up. Your head has moved from $r$ meters to $r+1$ meters (your head is now 1 meter farther from the center of the planet). So, on earth, you've moved from about 6.4 million meters away to about 6.4 million meters...plus one! That's going to make a change in the force on your head that's probably way too small for you to notice.



    On a man-made rotating wheel, you're going to have a much smaller value of $r$ (assuming the wheel is way less than the size of a planet). So $r-1$ meters (keep in mind, when you stand up inside the rotating wheel, your head is closer to the hub of the wheel, so it's a change to $r-1$ instead of $r+1$ as it would be on the planet) might be different enough from $r$ meters to be something you feel, and, if you spent a lot of time there, or were born there, or whatever, you would get used to things (like your head) being "lighter" when you stand up. If that was your "normal", then it might feel really strange to you when that didn't happen in Earth's gravity.






    share|cite|improve this answer








    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 1




      Isn't this why such craft have to be pretty large?
      – RonJohn
      yesterday






    • 7




      The term of art for the effects you're talking about is tidal forces.
      – Michael Seifert
      yesterday






    • 2




      @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
      – Luaan
      yesterday










    • You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
      – Yakk
      yesterday








    • 1




      @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
      – Ghedipunk
      5 hours ago















    up vote
    26
    down vote













    I'm speculating, but the speculation is based on actual physics :).



    Your physical experience of gravity on a planet and artificial gravity at the outside of a rotating wheel might be different based on the following.



    The force you feel from a planet is $G*m_{you}*M_{planet}/r^2$ (Gravitational constant times your mass times the mass of the planet, divided by the distance $r$ from you to the center of the planet, squared.



    The force you feel from the rotating wheel is $m_{you}*omega^2r$ (your mass times the angular velocity (squared) times $r$, the distance from you to the center of the wheel).



    So, suppose you are on a planet (which would normally have a very large value of $r$--meaning, you are a long way from its center), and you are seated, then you stand up. Your head has moved from $r$ meters to $r+1$ meters (your head is now 1 meter farther from the center of the planet). So, on earth, you've moved from about 6.4 million meters away to about 6.4 million meters...plus one! That's going to make a change in the force on your head that's probably way too small for you to notice.



    On a man-made rotating wheel, you're going to have a much smaller value of $r$ (assuming the wheel is way less than the size of a planet). So $r-1$ meters (keep in mind, when you stand up inside the rotating wheel, your head is closer to the hub of the wheel, so it's a change to $r-1$ instead of $r+1$ as it would be on the planet) might be different enough from $r$ meters to be something you feel, and, if you spent a lot of time there, or were born there, or whatever, you would get used to things (like your head) being "lighter" when you stand up. If that was your "normal", then it might feel really strange to you when that didn't happen in Earth's gravity.






    share|cite|improve this answer








    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 1




      Isn't this why such craft have to be pretty large?
      – RonJohn
      yesterday






    • 7




      The term of art for the effects you're talking about is tidal forces.
      – Michael Seifert
      yesterday






    • 2




      @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
      – Luaan
      yesterday










    • You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
      – Yakk
      yesterday








    • 1




      @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
      – Ghedipunk
      5 hours ago













    up vote
    26
    down vote










    up vote
    26
    down vote









    I'm speculating, but the speculation is based on actual physics :).



    Your physical experience of gravity on a planet and artificial gravity at the outside of a rotating wheel might be different based on the following.



    The force you feel from a planet is $G*m_{you}*M_{planet}/r^2$ (Gravitational constant times your mass times the mass of the planet, divided by the distance $r$ from you to the center of the planet, squared.



    The force you feel from the rotating wheel is $m_{you}*omega^2r$ (your mass times the angular velocity (squared) times $r$, the distance from you to the center of the wheel).



    So, suppose you are on a planet (which would normally have a very large value of $r$--meaning, you are a long way from its center), and you are seated, then you stand up. Your head has moved from $r$ meters to $r+1$ meters (your head is now 1 meter farther from the center of the planet). So, on earth, you've moved from about 6.4 million meters away to about 6.4 million meters...plus one! That's going to make a change in the force on your head that's probably way too small for you to notice.



    On a man-made rotating wheel, you're going to have a much smaller value of $r$ (assuming the wheel is way less than the size of a planet). So $r-1$ meters (keep in mind, when you stand up inside the rotating wheel, your head is closer to the hub of the wheel, so it's a change to $r-1$ instead of $r+1$ as it would be on the planet) might be different enough from $r$ meters to be something you feel, and, if you spent a lot of time there, or were born there, or whatever, you would get used to things (like your head) being "lighter" when you stand up. If that was your "normal", then it might feel really strange to you when that didn't happen in Earth's gravity.






    share|cite|improve this answer








    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    I'm speculating, but the speculation is based on actual physics :).



    Your physical experience of gravity on a planet and artificial gravity at the outside of a rotating wheel might be different based on the following.



    The force you feel from a planet is $G*m_{you}*M_{planet}/r^2$ (Gravitational constant times your mass times the mass of the planet, divided by the distance $r$ from you to the center of the planet, squared.



    The force you feel from the rotating wheel is $m_{you}*omega^2r$ (your mass times the angular velocity (squared) times $r$, the distance from you to the center of the wheel).



    So, suppose you are on a planet (which would normally have a very large value of $r$--meaning, you are a long way from its center), and you are seated, then you stand up. Your head has moved from $r$ meters to $r+1$ meters (your head is now 1 meter farther from the center of the planet). So, on earth, you've moved from about 6.4 million meters away to about 6.4 million meters...plus one! That's going to make a change in the force on your head that's probably way too small for you to notice.



    On a man-made rotating wheel, you're going to have a much smaller value of $r$ (assuming the wheel is way less than the size of a planet). So $r-1$ meters (keep in mind, when you stand up inside the rotating wheel, your head is closer to the hub of the wheel, so it's a change to $r-1$ instead of $r+1$ as it would be on the planet) might be different enough from $r$ meters to be something you feel, and, if you spent a lot of time there, or were born there, or whatever, you would get used to things (like your head) being "lighter" when you stand up. If that was your "normal", then it might feel really strange to you when that didn't happen in Earth's gravity.







    share|cite|improve this answer








    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer






    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 2 days ago









    msouth

    36124




    36124




    New contributor




    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    msouth is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.








    • 1




      Isn't this why such craft have to be pretty large?
      – RonJohn
      yesterday






    • 7




      The term of art for the effects you're talking about is tidal forces.
      – Michael Seifert
      yesterday






    • 2




      @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
      – Luaan
      yesterday










    • You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
      – Yakk
      yesterday








    • 1




      @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
      – Ghedipunk
      5 hours ago














    • 1




      Isn't this why such craft have to be pretty large?
      – RonJohn
      yesterday






    • 7




      The term of art for the effects you're talking about is tidal forces.
      – Michael Seifert
      yesterday






    • 2




      @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
      – Luaan
      yesterday










    • You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
      – Yakk
      yesterday








    • 1




      @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
      – Ghedipunk
      5 hours ago








    1




    1




    Isn't this why such craft have to be pretty large?
    – RonJohn
    yesterday




    Isn't this why such craft have to be pretty large?
    – RonJohn
    yesterday




    7




    7




    The term of art for the effects you're talking about is tidal forces.
    – Michael Seifert
    yesterday




    The term of art for the effects you're talking about is tidal forces.
    – Michael Seifert
    yesterday




    2




    2




    @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
    – Luaan
    yesterday




    @RonJohn Yes, but there's an economy to consider. E.g. it would be nice if trips to space didn't require such high acceleration as in modern rockets, but it's more economical to train a few specialists to handle those accelerations than to fly rockets at lower accelerations. The same way, the rotating ships would be built as small as possible for a given tolerable level of discomfort for most of their users. Maybe at a radius of 200 meters, noöne would notice the rotation - but 200 meters is a pretty bulky ship (and it would only work on the outer edge anyway!).
    – Luaan
    yesterday












    You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
    – Yakk
    yesterday






    You should also account for "running widdershins" making your heavier. The effect seems to scale down with the square root of the radius, so it might persist longer than the linear height change impact.
    – Yakk
    yesterday






    1




    1




    @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
    – Ghedipunk
    5 hours ago




    @Luaan, on the topic of economy: Just because it has a radius of 200m doesn't mean it has to have a circumference of 1256m... The habitat could just be a couple of evenly weighted capsules on a 400m tether.
    – Ghedipunk
    5 hours ago










    up vote
    8
    down vote













    For a non-technical answer, remember when you were a kid on the playground? (Yes, I know I'm making what's perhaps a parochial assumption.) If you sat on the merry-go-round (this: https://en.wikipedia.org/wiki/Roundabout_(play) ) and got the other kids to push it around really fast, you could feel the "gravity" pulling you outwards. But because you were also going around in a tight circle, the fluid in your ears sloshed around, and so you got dizzy.



    Now scale this up to a moderately-sized space station. You might still have some effect on the ears from rotation (how much depends on the size), but because you've been there a long time, your body has adapted to this as being normal. When you shift to "real" gravity, the rotation effect goes away, but to your body this is now NOT normal.



    (Whether this would actually happen I can't say: AFAIK no one has tried it, but it's certainly plausible enough for SF :-))






    share|cite|improve this answer





















    • The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
      – Andrew Steane
      2 days ago






    • 3




      @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
      – Draco18s
      2 days ago






    • 8




      @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
      – trapper
      yesterday












    • Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
      – famargar
      4 hours ago















    up vote
    8
    down vote













    For a non-technical answer, remember when you were a kid on the playground? (Yes, I know I'm making what's perhaps a parochial assumption.) If you sat on the merry-go-round (this: https://en.wikipedia.org/wiki/Roundabout_(play) ) and got the other kids to push it around really fast, you could feel the "gravity" pulling you outwards. But because you were also going around in a tight circle, the fluid in your ears sloshed around, and so you got dizzy.



    Now scale this up to a moderately-sized space station. You might still have some effect on the ears from rotation (how much depends on the size), but because you've been there a long time, your body has adapted to this as being normal. When you shift to "real" gravity, the rotation effect goes away, but to your body this is now NOT normal.



    (Whether this would actually happen I can't say: AFAIK no one has tried it, but it's certainly plausible enough for SF :-))






    share|cite|improve this answer





















    • The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
      – Andrew Steane
      2 days ago






    • 3




      @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
      – Draco18s
      2 days ago






    • 8




      @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
      – trapper
      yesterday












    • Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
      – famargar
      4 hours ago













    up vote
    8
    down vote










    up vote
    8
    down vote









    For a non-technical answer, remember when you were a kid on the playground? (Yes, I know I'm making what's perhaps a parochial assumption.) If you sat on the merry-go-round (this: https://en.wikipedia.org/wiki/Roundabout_(play) ) and got the other kids to push it around really fast, you could feel the "gravity" pulling you outwards. But because you were also going around in a tight circle, the fluid in your ears sloshed around, and so you got dizzy.



    Now scale this up to a moderately-sized space station. You might still have some effect on the ears from rotation (how much depends on the size), but because you've been there a long time, your body has adapted to this as being normal. When you shift to "real" gravity, the rotation effect goes away, but to your body this is now NOT normal.



    (Whether this would actually happen I can't say: AFAIK no one has tried it, but it's certainly plausible enough for SF :-))






    share|cite|improve this answer












    For a non-technical answer, remember when you were a kid on the playground? (Yes, I know I'm making what's perhaps a parochial assumption.) If you sat on the merry-go-round (this: https://en.wikipedia.org/wiki/Roundabout_(play) ) and got the other kids to push it around really fast, you could feel the "gravity" pulling you outwards. But because you were also going around in a tight circle, the fluid in your ears sloshed around, and so you got dizzy.



    Now scale this up to a moderately-sized space station. You might still have some effect on the ears from rotation (how much depends on the size), but because you've been there a long time, your body has adapted to this as being normal. When you shift to "real" gravity, the rotation effect goes away, but to your body this is now NOT normal.



    (Whether this would actually happen I can't say: AFAIK no one has tried it, but it's certainly plausible enough for SF :-))







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 days ago









    jamesqf

    34524




    34524












    • The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
      – Andrew Steane
      2 days ago






    • 3




      @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
      – Draco18s
      2 days ago






    • 8




      @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
      – trapper
      yesterday












    • Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
      – famargar
      4 hours ago


















    • The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
      – Andrew Steane
      2 days ago






    • 3




      @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
      – Draco18s
      2 days ago






    • 8




      @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
      – trapper
      yesterday












    • Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
      – famargar
      4 hours ago
















    The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
    – Andrew Steane
    2 days ago




    The distance scale could be such that the rotation rate is very small, say once per 24 hours. Ear-related effects would then be too small to matter.
    – Andrew Steane
    2 days ago




    3




    3




    @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
    – Draco18s
    2 days ago




    @AndrewSteane It depends on two things: 1) how big your habitat is and 2) how fast its spinning. The smaller it is, the faster it has to spin in order to generate 1 G of gravity on the outer surface as well as causing a steeper gradient (i.e. if your habitat is 12 feet in diameter, then your head experiences 0 G and your feet 1 G; an extreme scenario).
    – Draco18s
    2 days ago




    8




    8




    @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
    – trapper
    yesterday






    @AndrewSteane one rotation per 24 hours would require a radius of ~2 million km for 1G
    – trapper
    yesterday














    Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
    – famargar
    4 hours ago




    Merry go rounds create acceleration that goes sideways - something ears are not used to. Gravity and rotating spaceships create acceleration downwards, something your ears are designed for. So how does this matter?
    – famargar
    4 hours ago










    up vote
    5
    down vote













    You would be unlikely to notice any difference unless the spacecraft is fairly small.



    For example with 50m radius there is only a 2% difference between 50m and 49m. The station in this case would be spinning at 4.25 rpm to generate 1G.






    share|cite|improve this answer








    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 6




      2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
      – Robert Frost
      18 hours ago










    • I can't even imagine what kind of math lead you to those conclusions.
      – trapper
      18 hours ago






    • 1




      Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
      – Robert Frost
      17 hours ago






    • 1




      You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
      – trapper
      17 hours ago






    • 1




      You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
      – Robert Frost
      15 hours ago















    up vote
    5
    down vote













    You would be unlikely to notice any difference unless the spacecraft is fairly small.



    For example with 50m radius there is only a 2% difference between 50m and 49m. The station in this case would be spinning at 4.25 rpm to generate 1G.






    share|cite|improve this answer








    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 6




      2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
      – Robert Frost
      18 hours ago










    • I can't even imagine what kind of math lead you to those conclusions.
      – trapper
      18 hours ago






    • 1




      Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
      – Robert Frost
      17 hours ago






    • 1




      You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
      – trapper
      17 hours ago






    • 1




      You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
      – Robert Frost
      15 hours ago













    up vote
    5
    down vote










    up vote
    5
    down vote









    You would be unlikely to notice any difference unless the spacecraft is fairly small.



    For example with 50m radius there is only a 2% difference between 50m and 49m. The station in this case would be spinning at 4.25 rpm to generate 1G.






    share|cite|improve this answer








    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    You would be unlikely to notice any difference unless the spacecraft is fairly small.



    For example with 50m radius there is only a 2% difference between 50m and 49m. The station in this case would be spinning at 4.25 rpm to generate 1G.







    share|cite|improve this answer








    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer






    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered yesterday









    trapper

    1511




    1511




    New contributor




    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    trapper is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.








    • 6




      2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
      – Robert Frost
      18 hours ago










    • I can't even imagine what kind of math lead you to those conclusions.
      – trapper
      18 hours ago






    • 1




      Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
      – Robert Frost
      17 hours ago






    • 1




      You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
      – trapper
      17 hours ago






    • 1




      You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
      – Robert Frost
      15 hours ago














    • 6




      2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
      – Robert Frost
      18 hours ago










    • I can't even imagine what kind of math lead you to those conclusions.
      – trapper
      18 hours ago






    • 1




      Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
      – Robert Frost
      17 hours ago






    • 1




      You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
      – trapper
      17 hours ago






    • 1




      You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
      – Robert Frost
      15 hours ago








    6




    6




    2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
    – Robert Frost
    18 hours ago




    2% per metre is quite a lot. A 2m tall, 80kg person upon standing up, would be thrown forwards with a 3kg force and vertical as sensed by their inner ear would vary by up to 18 degrees as you did so, depending upon which way you were facing relative to the direction of travel. That should be enough to stumble or fall if you expected it to go one way and it went the other.
    – Robert Frost
    18 hours ago












    I can't even imagine what kind of math lead you to those conclusions.
    – trapper
    18 hours ago




    I can't even imagine what kind of math lead you to those conclusions.
    – trapper
    18 hours ago




    1




    1




    Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
    – Robert Frost
    17 hours ago




    Sine X approximates X for small X so simply multiply mass by percentage difference for an instant approximation. Simples.
    – Robert Frost
    17 hours ago




    1




    1




    You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
    – trapper
    17 hours ago




    You can’t just multiply numbers randomly though. 3kg is not a ‘force’, and your centre of mass while standing is at hip level, not 2m off the ground.
    – trapper
    17 hours ago




    1




    1




    You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
    – Robert Frost
    15 hours ago




    You're obviously right re kg not being a force but if rotation is generating 1g at the circumference then mass at the circumference is isometric with weight on earth, so I was talking in terms of the weight of 3kg on Earth.
    – Robert Frost
    15 hours ago










    up vote
    1
    down vote













    Experiencing rotational forces and fixed direction gravity at the same time would be weird.



    A person under the influence of gravity experiences a constant acceleration. A person in a rotating reference frame experiences a constant magnitude acceleration, but the direction is changing constantly.



    This means that if you are experiencing both at once, and the axis of rotation is not parallel to the direction of gravity, the total acceleration that you feel will be constantly fluctuating. It's more or less equivalent to the fact that if you swing a bucket on a rope in a vertical circle, the tension in the rope is higher when the bucket is near the ground than when it is at the top of the swing.



    Depending on how fast the rotation of your station is, this could make the transition period feel like a rollercoaster.



    Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second. That would avoid the roller coaster effect. But if they skipped that process then I could easily see people emptying their stomachs during the process.






    share|cite|improve this answer










    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 2




      Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
      – Beta
      yesterday










    • @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
      – Arcanist Lupus
      yesterday






    • 3




      I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
      – amI
      yesterday






    • 1




      The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
      – msouth
      10 hours ago










    • "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
      – JiK
      2 hours ago















    up vote
    1
    down vote













    Experiencing rotational forces and fixed direction gravity at the same time would be weird.



    A person under the influence of gravity experiences a constant acceleration. A person in a rotating reference frame experiences a constant magnitude acceleration, but the direction is changing constantly.



    This means that if you are experiencing both at once, and the axis of rotation is not parallel to the direction of gravity, the total acceleration that you feel will be constantly fluctuating. It's more or less equivalent to the fact that if you swing a bucket on a rope in a vertical circle, the tension in the rope is higher when the bucket is near the ground than when it is at the top of the swing.



    Depending on how fast the rotation of your station is, this could make the transition period feel like a rollercoaster.



    Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second. That would avoid the roller coaster effect. But if they skipped that process then I could easily see people emptying their stomachs during the process.






    share|cite|improve this answer










    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.














    • 2




      Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
      – Beta
      yesterday










    • @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
      – Arcanist Lupus
      yesterday






    • 3




      I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
      – amI
      yesterday






    • 1




      The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
      – msouth
      10 hours ago










    • "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
      – JiK
      2 hours ago













    up vote
    1
    down vote










    up vote
    1
    down vote









    Experiencing rotational forces and fixed direction gravity at the same time would be weird.



    A person under the influence of gravity experiences a constant acceleration. A person in a rotating reference frame experiences a constant magnitude acceleration, but the direction is changing constantly.



    This means that if you are experiencing both at once, and the axis of rotation is not parallel to the direction of gravity, the total acceleration that you feel will be constantly fluctuating. It's more or less equivalent to the fact that if you swing a bucket on a rope in a vertical circle, the tension in the rope is higher when the bucket is near the ground than when it is at the top of the swing.



    Depending on how fast the rotation of your station is, this could make the transition period feel like a rollercoaster.



    Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second. That would avoid the roller coaster effect. But if they skipped that process then I could easily see people emptying their stomachs during the process.






    share|cite|improve this answer










    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    Experiencing rotational forces and fixed direction gravity at the same time would be weird.



    A person under the influence of gravity experiences a constant acceleration. A person in a rotating reference frame experiences a constant magnitude acceleration, but the direction is changing constantly.



    This means that if you are experiencing both at once, and the axis of rotation is not parallel to the direction of gravity, the total acceleration that you feel will be constantly fluctuating. It's more or less equivalent to the fact that if you swing a bucket on a rope in a vertical circle, the tension in the rope is higher when the bucket is near the ground than when it is at the top of the swing.



    Depending on how fast the rotation of your station is, this could make the transition period feel like a rollercoaster.



    Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second. That would avoid the roller coaster effect. But if they skipped that process then I could easily see people emptying their stomachs during the process.







    share|cite|improve this answer










    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    share|cite|improve this answer



    share|cite|improve this answer








    edited yesterday





















    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.









    answered 2 days ago









    Arcanist Lupus

    1113




    1113




    New contributor




    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





    New contributor





    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    Arcanist Lupus is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.








    • 2




      Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
      – Beta
      yesterday










    • @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
      – Arcanist Lupus
      yesterday






    • 3




      I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
      – amI
      yesterday






    • 1




      The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
      – msouth
      10 hours ago










    • "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
      – JiK
      2 hours ago














    • 2




      Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
      – Beta
      yesterday










    • @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
      – Arcanist Lupus
      yesterday






    • 3




      I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
      – amI
      yesterday






    • 1




      The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
      – msouth
      10 hours ago










    • "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
      – JiK
      2 hours ago








    2




    2




    Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
    – Beta
    yesterday




    Sorry, but this is incorrect. Imagine swinging a bucket on a rope in a horizontal circle.
    – Beta
    yesterday












    @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
    – Arcanist Lupus
    yesterday




    @Beta, well, it depends on which way the station is rotating. You could organize the transition in a logical, non-rollercoaster manner. But you don't have to.
    – Arcanist Lupus
    yesterday




    3




    3




    I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
    – amI
    yesterday




    I hope you aren't referring to orientation relative to a planet -- the only linear acceleration on the station would be due to its translational rocket engine.
    – amI
    yesterday




    1




    1




    The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
    – msouth
    10 hours ago




    The tension on a rope on a bucket increases and decreases because you are standing on a planet experiencing its gravitational field. That does not apply in this situation.
    – msouth
    10 hours ago












    "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
    – JiK
    2 hours ago




    "Of course, the logical way to transition reference frames would be to leave one, enter zero-g, then enter the second." Why would the transition matter after you are in the centrifuge?
    – JiK
    2 hours ago










    up vote
    -1
    down vote













    In my opinion there is mechanical difference in which the rotation affects you in those two cases (you rotate on planet while not on poles). On planets surface the mass pulls you inward and the planetary rotation lessens the force applied to you. On the station the rotation works the other way, basically creating gravity from nothing.



    Have a nice day.






    share|cite|improve this answer








    New contributor




    Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      -1
      down vote













      In my opinion there is mechanical difference in which the rotation affects you in those two cases (you rotate on planet while not on poles). On planets surface the mass pulls you inward and the planetary rotation lessens the force applied to you. On the station the rotation works the other way, basically creating gravity from nothing.



      Have a nice day.






      share|cite|improve this answer








      New contributor




      Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















        up vote
        -1
        down vote










        up vote
        -1
        down vote









        In my opinion there is mechanical difference in which the rotation affects you in those two cases (you rotate on planet while not on poles). On planets surface the mass pulls you inward and the planetary rotation lessens the force applied to you. On the station the rotation works the other way, basically creating gravity from nothing.



        Have a nice day.






        share|cite|improve this answer








        New contributor




        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        In my opinion there is mechanical difference in which the rotation affects you in those two cases (you rotate on planet while not on poles). On planets surface the mass pulls you inward and the planetary rotation lessens the force applied to you. On the station the rotation works the other way, basically creating gravity from nothing.



        Have a nice day.







        share|cite|improve this answer








        New contributor




        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        share|cite|improve this answer



        share|cite|improve this answer






        New contributor




        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.









        answered yesterday









        Martin Hasa

        1




        1




        New contributor




        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.





        New contributor





        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        Martin Hasa is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.

















            protected by ACuriousMind 5 hours ago



            Thank you for your interest in this question.
            Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).



            Would you like to answer one of these unanswered questions instead?



            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents