Proving that a sequence $[(a_{(m,n)}) = frac{v_n}{n},; n ge 1$] converges to $frac{sqrt m}{m}$, for any $m gt...
up vote
1
down vote
favorite
Given the natural numbers with $0 in mathbb N$.
Let $m in mathbb N$ with $m ge 1$.
We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:
$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.
$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.
$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.
Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$
For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.
real-analysis sequences-and-series convergence
add a comment |
up vote
1
down vote
favorite
Given the natural numbers with $0 in mathbb N$.
Let $m in mathbb N$ with $m ge 1$.
We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:
$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.
$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.
$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.
Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$
For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.
real-analysis sequences-and-series convergence
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Given the natural numbers with $0 in mathbb N$.
Let $m in mathbb N$ with $m ge 1$.
We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:
$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.
$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.
$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.
Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$
For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.
real-analysis sequences-and-series convergence
Given the natural numbers with $0 in mathbb N$.
Let $m in mathbb N$ with $m ge 1$.
We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:
$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.
$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.
$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.
Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$
For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
edited 2 days ago
asked 2 days ago
CopyPasteIt
3,3081525
3,3081525
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
$$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
also, we have
$$v_n leq sqrt{u_n} < v_n +1 Rightarrow
frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$
or
$$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$
But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
$$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$
and finally from $(2)$
$$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
add a comment |
up vote
1
down vote
The integer part satisfies
begin{alignat*}{3}
frac{n^2}{m}-1
& le u_n
&& le frac{n^2}{m} \
sqrt{u_n}-1
& le v_n
&& le sqrt{u_n}
end{alignat*}
Plugging this in, we get
$$
sqrt{frac 1m - frac{1}{n^2}} - frac 1n
%left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
le frac{v_n}{n}
le frac{1}{sqrt{m}}.
$$
The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
$$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
also, we have
$$v_n leq sqrt{u_n} < v_n +1 Rightarrow
frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$
or
$$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$
But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
$$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$
and finally from $(2)$
$$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
add a comment |
up vote
1
down vote
accepted
Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
$$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
also, we have
$$v_n leq sqrt{u_n} < v_n +1 Rightarrow
frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$
or
$$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$
But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
$$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$
and finally from $(2)$
$$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
$$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
also, we have
$$v_n leq sqrt{u_n} < v_n +1 Rightarrow
frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$
or
$$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$
But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
$$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$
and finally from $(2)$
$$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$
Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
$$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
also, we have
$$v_n leq sqrt{u_n} < v_n +1 Rightarrow
frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$
or
$$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$
But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
$$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$
and finally from $(2)$
$$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$
edited 2 days ago
answered 2 days ago
rtybase
9,96221433
9,96221433
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
add a comment |
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
Didn't check all the details but certainly looks like the remainder is no problem!
– CopyPasteIt
2 days ago
add a comment |
up vote
1
down vote
The integer part satisfies
begin{alignat*}{3}
frac{n^2}{m}-1
& le u_n
&& le frac{n^2}{m} \
sqrt{u_n}-1
& le v_n
&& le sqrt{u_n}
end{alignat*}
Plugging this in, we get
$$
sqrt{frac 1m - frac{1}{n^2}} - frac 1n
%left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
le frac{v_n}{n}
le frac{1}{sqrt{m}}.
$$
The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
add a comment |
up vote
1
down vote
The integer part satisfies
begin{alignat*}{3}
frac{n^2}{m}-1
& le u_n
&& le frac{n^2}{m} \
sqrt{u_n}-1
& le v_n
&& le sqrt{u_n}
end{alignat*}
Plugging this in, we get
$$
sqrt{frac 1m - frac{1}{n^2}} - frac 1n
%left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
le frac{v_n}{n}
le frac{1}{sqrt{m}}.
$$
The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
add a comment |
up vote
1
down vote
up vote
1
down vote
The integer part satisfies
begin{alignat*}{3}
frac{n^2}{m}-1
& le u_n
&& le frac{n^2}{m} \
sqrt{u_n}-1
& le v_n
&& le sqrt{u_n}
end{alignat*}
Plugging this in, we get
$$
sqrt{frac 1m - frac{1}{n^2}} - frac 1n
%left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
le frac{v_n}{n}
le frac{1}{sqrt{m}}.
$$
The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.
The integer part satisfies
begin{alignat*}{3}
frac{n^2}{m}-1
& le u_n
&& le frac{n^2}{m} \
sqrt{u_n}-1
& le v_n
&& le sqrt{u_n}
end{alignat*}
Plugging this in, we get
$$
sqrt{frac 1m - frac{1}{n^2}} - frac 1n
%left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
le frac{v_n}{n}
le frac{1}{sqrt{m}}.
$$
The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.
edited yesterday
answered 2 days ago
Michał Miśkiewicz
2,733616
2,733616
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
add a comment |
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
1
1
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
– CopyPasteIt
2 days ago
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
Yes I did, thanks for pointing this out! (corrected)
– Michał Miśkiewicz
yesterday
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994328%2fproving-that-a-sequence-a-m-n-fracv-nn-n-ge-1-converges-to%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password