Proving that a sequence $[(a_{(m,n)}) = frac{v_n}{n},; n ge 1$] converges to $frac{sqrt m}{m}$, for any $m gt...











up vote
1
down vote

favorite












Given the natural numbers with $0 in mathbb N$.



Let $m in mathbb N$ with $m ge 1$.



We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



$quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



$quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



$quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
converges to $frac{sqrt m}{m}?$




For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    Given the natural numbers with $0 in mathbb N$.



    Let $m in mathbb N$ with $m ge 1$.



    We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



    $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



    $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



    $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




    Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
    converges to $frac{sqrt m}{m}?$




    For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Given the natural numbers with $0 in mathbb N$.



      Let $m in mathbb N$ with $m ge 1$.



      We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



      $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



      $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



      $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




      Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
      converges to $frac{sqrt m}{m}?$




      For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.










      share|cite|improve this question















      Given the natural numbers with $0 in mathbb N$.



      Let $m in mathbb N$ with $m ge 1$.



      We define the sequence $(a_{(m,n)})_{,n ge 1}$ in $mathbb Q$ as follows:



      $quad text{Set } u_n = [frac{n times n}{m}] quad text{ ([.] is the floor function)}$.



      $quad text{Set } v_n = text{ the greatest natural number with } v_n^2 le u_n$.



      $quad text{Set } a_{(m,n)} = frac{v_n}{n}$.




      Question: Is there a proof that the sequence $(a_{(m,n)})_{,n ge 0}$
      converges to $frac{sqrt m}{m}?$




      For the special case $m = 2$, see Proving that a sequence [$a_n = frac{v_n}{n},; n ge 2$] converges.







      real-analysis sequences-and-series convergence






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago

























      asked 2 days ago









      CopyPasteIt

      3,3081525




      3,3081525






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago


















          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994328%2fproving-that-a-sequence-a-m-n-fracv-nn-n-ge-1-converges-to%23new-answer', 'question_page');
          }
          );

          Post as a guest
































          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago















          up vote
          1
          down vote



          accepted










          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer























          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$






          share|cite|improve this answer














          Similarly with $m=2$ case, but using divisibility with remainder, given $ninmathbb{N}$
          $$n=mq+r, 0leq r <m Rightarrow left[frac{ncdot n}{m}right]=q^2m+2qr+left[frac{r^2}{m}right] tag{1}$$
          also, we have
          $$v_n leq sqrt{u_n} < v_n +1 Rightarrow
          frac{v_n}{n}leq frac{sqrt{u_n}}{n}<frac{v_n}{n} + frac{1}{n} overset{(1)}{Rightarrow} \
          frac{v_n}{n}leq frac{sqrt{q^2m+2qr+left[frac{r^2}{m}right]}}{mq+r}<frac{v_n}{n} + frac{1}{n}Rightarrow \
          frac{v_n}{n}leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}<frac{v_n}{n} + frac{1}{n}$$

          or
          $$0leq frac{sqrt{m}}{m}cdotfrac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}} - frac{v_n}{n} < frac{1}{n} tag{2}$$



          But, from $(1)$, $m$ is a fixed number and $r$ is bounded, so when $nrightarrowinfty$ then $qrightarrowinfty$. Thus
          $$limlimits_{nrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=
          limlimits_{qrightarrowinfty} frac{sqrt{1+frac{2r}{qm}+frac{left[frac{r^2}{m}right]}{q^2m}}}{1+frac{r}{mq}}=1$$

          and finally from $(2)$
          $$limlimits_{nrightarrowinfty}frac{v_n}{n}=frac{sqrt{m}}{m}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 2 days ago

























          answered 2 days ago









          rtybase

          9,96221433




          9,96221433












          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago


















          • Didn't check all the details but certainly looks like the remainder is no problem!
            – CopyPasteIt
            2 days ago
















          Didn't check all the details but certainly looks like the remainder is no problem!
          – CopyPasteIt
          2 days ago




          Didn't check all the details but certainly looks like the remainder is no problem!
          – CopyPasteIt
          2 days ago










          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday















          up vote
          1
          down vote













          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer



















          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday













          up vote
          1
          down vote










          up vote
          1
          down vote









          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.






          share|cite|improve this answer














          The integer part satisfies
          begin{alignat*}{3}
          frac{n^2}{m}-1
          & le u_n
          && le frac{n^2}{m} \
          sqrt{u_n}-1
          & le v_n
          && le sqrt{u_n}
          end{alignat*}

          Plugging this in, we get
          $$
          sqrt{frac 1m - frac{1}{n^2}} - frac 1n
          %left( sqrt{frac 1m - frac{1}{n^2}} - 1 right) / n
          le frac{v_n}{n}
          le frac{1}{sqrt{m}}.
          $$

          The right-hand side is already $1/sqrt{m}$, and the left-hand side tends to this number.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered 2 days ago









          Michał Miśkiewicz

          2,733616




          2,733616








          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday














          • 1




            I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
            – CopyPasteIt
            2 days ago












          • Yes I did, thanks for pointing this out! (corrected)
            – Michał Miśkiewicz
            yesterday








          1




          1




          I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
          – CopyPasteIt
          2 days ago






          I think you meant $sqrt{frac 1m - frac{1}{n^2}} - 1/n$
          – CopyPasteIt
          2 days ago














          Yes I did, thanks for pointing this out! (corrected)
          – Michał Miśkiewicz
          yesterday




          Yes I did, thanks for pointing this out! (corrected)
          – Michał Miśkiewicz
          yesterday


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994328%2fproving-that-a-sequence-a-m-n-fracv-nn-n-ge-1-converges-to%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?