Prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.











up vote
5
down vote

favorite
4












I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question






















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday















up vote
5
down vote

favorite
4












I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question






















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday













up vote
5
down vote

favorite
4









up vote
5
down vote

favorite
4






4





I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!










share|cite|improve this question













I have no idea how to do this question.



I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.



What I've tried:



$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.



Answers and hints appreciated!







calculus integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Yip Jung Hon

46911




46911












  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday


















  • Try completing the square and then trig substituting.
    – Kemono Chen
    yesterday
















Try completing the square and then trig substituting.
– Kemono Chen
yesterday




Try completing the square and then trig substituting.
– Kemono Chen
yesterday










4 Answers
4






active

oldest

votes

















up vote
8
down vote



accepted










Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.






share|cite|improve this answer






























    up vote
    3
    down vote













    For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



    This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



    $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



    Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



    $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
    $$

    Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
    tell us the integral on LHS is



    $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
    = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



    Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



    $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



    This leads to



    $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
    frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
    $$

    By comparing coefficients of $t^k$ on both sides, we obtain



    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
    = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
    $$



    In particular, for $k = 2$, this give us



    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






    share|cite|improve this answer






























      up vote
      2
      down vote













      For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
      $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
      On the other hand
      $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






      share|cite|improve this answer




























        up vote
        0
        down vote













        $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



        Substitute $x+frac 12=u$



        $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



        Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



        On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



        Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



        In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






        share|cite|improve this answer























          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994751%2fprove-int-infty-infty-frac1x2x13dx-frac4-pi3-sqrt3%23new-answer', 'question_page');
          }
          );

          Post as a guest
































          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          8
          down vote



          accepted










          Differentiate with respect to $b$ gives
          $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
          $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
          or
          $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
          and one another derivative gives following result
          $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
          now you have the answer with $a=dfrac12$ and $b=1$.






          share|cite|improve this answer



























            up vote
            8
            down vote



            accepted










            Differentiate with respect to $b$ gives
            $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
            $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
            or
            $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
            and one another derivative gives following result
            $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
            now you have the answer with $a=dfrac12$ and $b=1$.






            share|cite|improve this answer

























              up vote
              8
              down vote



              accepted







              up vote
              8
              down vote



              accepted






              Differentiate with respect to $b$ gives
              $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
              $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
              or
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
              and one another derivative gives following result
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
              now you have the answer with $a=dfrac12$ and $b=1$.






              share|cite|improve this answer














              Differentiate with respect to $b$ gives
              $$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
              $$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
              or
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
              and one another derivative gives following result
              $$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
              now you have the answer with $a=dfrac12$ and $b=1$.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited yesterday

























              answered yesterday









              Nosrati

              25.4k62252




              25.4k62252






















                  up vote
                  3
                  down vote













                  For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                  This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                  $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                  Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                  $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                  $$

                  Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                  tell us the integral on LHS is



                  $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                  = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                  Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                  $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                  This leads to



                  $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                  frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                  $$

                  By comparing coefficients of $t^k$ on both sides, we obtain



                  $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                  = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                  $$



                  In particular, for $k = 2$, this give us



                  $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                  share|cite|improve this answer



























                    up vote
                    3
                    down vote













                    For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                    This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                    $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                    Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                    $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                    $$

                    Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                    tell us the integral on LHS is



                    $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                    = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                    Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                    $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                    This leads to



                    $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                    frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                    $$

                    By comparing coefficients of $t^k$ on both sides, we obtain



                    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                    = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                    $$



                    In particular, for $k = 2$, this give us



                    $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                    share|cite|improve this answer

























                      up vote
                      3
                      down vote










                      up vote
                      3
                      down vote









                      For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                      This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                      $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                      Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                      $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      $$

                      Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                      tell us the integral on LHS is



                      $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                      = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                      Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                      $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                      This leads to



                      $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                      frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                      $$

                      By comparing coefficients of $t^k$ on both sides, we obtain



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                      $$



                      In particular, for $k = 2$, this give us



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$






                      share|cite|improve this answer














                      For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.



                      This implies for any $t in (0,frac34)$, following expansion in $t$ converges:



                      $$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$



                      Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:



                      $$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      $$

                      Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
                      tell us the integral on LHS is



                      $$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
                      = frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$



                      Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:



                      $$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$



                      This leads to



                      $$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
                      frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
                      $$

                      By comparing coefficients of $t^k$ on both sides, we obtain



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
                      = frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
                      $$



                      In particular, for $k = 2$, this give us



                      $$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited yesterday

























                      answered yesterday









                      achille hui

                      93.1k5127251




                      93.1k5127251






















                          up vote
                          2
                          down vote













                          For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                          $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                          On the other hand
                          $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                          share|cite|improve this answer

























                            up vote
                            2
                            down vote













                            For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                            $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                            On the other hand
                            $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                            share|cite|improve this answer























                              up vote
                              2
                              down vote










                              up vote
                              2
                              down vote









                              For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                              $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                              On the other hand
                              $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$






                              share|cite|improve this answer












                              For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
                              $$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
                              On the other hand
                              $$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered yesterday









                              Jack D'Aurizio

                              282k33274653




                              282k33274653






















                                  up vote
                                  0
                                  down vote













                                  $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                  Substitute $x+frac 12=u$



                                  $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                  Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                  On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                  Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                  In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                  share|cite|improve this answer



























                                    up vote
                                    0
                                    down vote













                                    $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                    Substitute $x+frac 12=u$



                                    $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                    Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                    On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                    Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                    In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                    share|cite|improve this answer

























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                      Substitute $x+frac 12=u$



                                      $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                      Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                      On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                      Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                      In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$






                                      share|cite|improve this answer














                                      $$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$



                                      Substitute $x+frac 12=u$



                                      $$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$



                                      Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$



                                      On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$



                                      Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$



                                      In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited yesterday

























                                      answered yesterday









                                      Digamma

                                      5,8001437




                                      5,8001437






























                                           

                                          draft saved


                                          draft discarded



















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994751%2fprove-int-infty-infty-frac1x2x13dx-frac4-pi3-sqrt3%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest




















































































                                          Popular posts from this blog

                                          How to change which sound is reproduced for terminal bell?

                                          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                                          Can I use Tabulator js library in my java Spring + Thymeleaf project?