Prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.
up vote
5
down vote
favorite
I have no idea how to do this question.
I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.
What I've tried:
$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.
Answers and hints appreciated!
calculus integration
add a comment |
up vote
5
down vote
favorite
I have no idea how to do this question.
I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.
What I've tried:
$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.
Answers and hints appreciated!
calculus integration
Try completing the square and then trig substituting.
– Kemono Chen
yesterday
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
I have no idea how to do this question.
I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.
What I've tried:
$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.
Answers and hints appreciated!
calculus integration
I have no idea how to do this question.
I'm given $int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=frac{pi}{sqrt{b^2-a^2}}$ if $b>|a|$ and I'm asked to prove $int^{infty}_{-infty}frac{1}{(x^2+x+1)^3}dx=frac{4pi}{3sqrt3}$.
What I've tried:
$int^{infty}_{-infty}frac{1}{(x^2+x+1)}dx=frac{2pi}{sqrt3}$. I've tried setting a variable as the power, ie: $I(r)=int^{infty}_{-infty}frac{1}{(x^2+x+1)^r}dx$ but differenciating the inside w.r.t to $r$ doesn't seem to form any differential equation that can be solved.
Answers and hints appreciated!
calculus integration
calculus integration
asked yesterday
Yip Jung Hon
46911
46911
Try completing the square and then trig substituting.
– Kemono Chen
yesterday
add a comment |
Try completing the square and then trig substituting.
– Kemono Chen
yesterday
Try completing the square and then trig substituting.
– Kemono Chen
yesterday
Try completing the square and then trig substituting.
– Kemono Chen
yesterday
add a comment |
4 Answers
4
active
oldest
votes
up vote
8
down vote
accepted
Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.
add a comment |
up vote
3
down vote
For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.
This implies for any $t in (0,frac34)$, following expansion in $t$ converges:
$$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$
Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:
$$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
$$
Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
tell us the integral on LHS is
$$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
= frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$
Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:
$$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$
This leads to
$$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
$$
By comparing coefficients of $t^k$ on both sides, we obtain
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
= frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
$$
In particular, for $k = 2$, this give us
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$
add a comment |
up vote
2
down vote
For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
$$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
On the other hand
$$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$
add a comment |
up vote
0
down vote
$$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$
Substitute $x+frac 12=u$
$$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$
Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$
On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$
Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$
In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$
add a comment |
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
accepted
Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.
add a comment |
up vote
8
down vote
accepted
Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.
add a comment |
up vote
8
down vote
accepted
up vote
8
down vote
accepted
Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.
Differentiate with respect to $b$ gives
$$dfrac{d}{db}int^{infty}_{-infty}frac{1}{x^2+2ax+b^2}dx=dfrac{d}{db}frac{pi}{sqrt{b^2-a^2}}$$
$$int^{infty}_{-infty}frac{-2b}{(x^2+2ax+b^2)^2}dx=frac{-2bpi}{2sqrt{(b^2-a^2)^3}}$$
or
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^2}dx=frac{pi}{2sqrt{(b^2-a^2)^3}}$$
and one another derivative gives following result
$$int^{infty}_{-infty}frac{1}{(x^2+2ax+b^2)^3}dx=frac{3pi}{8sqrt{(b^2-a^2)^5}}$$
now you have the answer with $a=dfrac12$ and $b=1$.
edited yesterday
answered yesterday
Nosrati
25.4k62252
25.4k62252
add a comment |
add a comment |
up vote
3
down vote
For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.
This implies for any $t in (0,frac34)$, following expansion in $t$ converges:
$$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$
Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:
$$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
$$
Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
tell us the integral on LHS is
$$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
= frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$
Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:
$$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$
This leads to
$$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
$$
By comparing coefficients of $t^k$ on both sides, we obtain
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
= frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
$$
In particular, for $k = 2$, this give us
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$
add a comment |
up vote
3
down vote
For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.
This implies for any $t in (0,frac34)$, following expansion in $t$ converges:
$$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$
Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:
$$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
$$
Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
tell us the integral on LHS is
$$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
= frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$
Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:
$$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$
This leads to
$$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
$$
By comparing coefficients of $t^k$ on both sides, we obtain
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
= frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
$$
In particular, for $k = 2$, this give us
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$
add a comment |
up vote
3
down vote
up vote
3
down vote
For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.
This implies for any $t in (0,frac34)$, following expansion in $t$ converges:
$$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$
Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:
$$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
$$
Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
tell us the integral on LHS is
$$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
= frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$
Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:
$$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$
This leads to
$$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
$$
By comparing coefficients of $t^k$ on both sides, we obtain
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
= frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
$$
In particular, for $k = 2$, this give us
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$
For real $x$, we have $x^2 + x + 1 = (x+frac12)^2 + frac34 ge frac34$.
This implies for any $t in (0,frac34)$, following expansion in $t$ converges:
$$frac{1}{x^2+x+1 - t} = sum_{k=0}^infty frac{t^k}{(x^2 + x + 1)^{k+1}}$$
Since everything on RHS is non-negative, by Tonelli, we can integrate them term by term:
$$int_{-infty}^infty frac{dx}{x^2+x+1 - t} = sum_{k=0}^infty t^k int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
$$
Set $a = frac12$ and $b = sqrt{1-t}$. Notice $b > |a|$, the formula you have
tell us the integral on LHS is
$$frac{pi}{sqrt{b^2 - a^2}} = frac{pi}{sqrt{frac34 - t}}
= frac{2pi}{sqrt{3}sqrt{1 - frac{4t}{3}}}$$
Recall $displaystyle;frac{1}{sqrt{1-4s}}$ is the generating function for the central binomial coefficients:
$$frac{1}{sqrt{1-4s}} = sum_{k=0}^infty binom{2k}{k} s^k$$
This leads to
$$sum_{k=0}^infty t^k int_0^infty frac{dx}{(x^2+x+1)^{k+1}} =
frac{2pi}{sqrt{3}}sum_{k=0}^infty binom{2k}{k}frac{t^k}{3^k}
$$
By comparing coefficients of $t^k$ on both sides, we obtain
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^{k+1}}
= frac{2pi}{3^ksqrt{3}}binom{2k}{k}quadtext{ for } k in mathbb{N}
$$
In particular, for $k = 2$, this give us
$$int_{-infty}^infty frac{dx}{(x^2+x+1)^3} = frac{2pi}{3^2sqrt{3}}binom{4}{2} = frac{4pi}{3sqrt{3}}$$
edited yesterday
answered yesterday
achille hui
93.1k5127251
93.1k5127251
add a comment |
add a comment |
up vote
2
down vote
For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
$$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
On the other hand
$$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$
add a comment |
up vote
2
down vote
For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
$$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
On the other hand
$$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$
add a comment |
up vote
2
down vote
up vote
2
down vote
For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
$$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
On the other hand
$$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$
For any $A>0$ we have $int_{-infty}^{+infty}frac{dz}{z^2+A} = frac{pi}{sqrt{A}}$, hence by applying $frac{d^2}{dA^2}$ to both sides we get
$$ int_{-infty}^{+infty}frac{dz}{(z^2+A)^3}=frac{3pi}{8A^2sqrt{A}}.tag{1} $$
On the other hand
$$ int_{-infty}^{+infty}frac{dx}{(x^2+x+1)^3}stackrel{xmapsto z-frac{1}{2}}{=}int_{-infty}^{+infty}frac{dz}{left(z^2+tfrac{3}{4}right)^3}=frac{4pi}{3sqrt{3}}.tag{2}$$
answered yesterday
Jack D'Aurizio
282k33274653
282k33274653
add a comment |
add a comment |
up vote
0
down vote
$$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$
Substitute $x+frac 12=u$
$$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$
Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$
On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$
Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$
In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$
add a comment |
up vote
0
down vote
$$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$
Substitute $x+frac 12=u$
$$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$
Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$
On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$
Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$
In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$
add a comment |
up vote
0
down vote
up vote
0
down vote
$$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$
Substitute $x+frac 12=u$
$$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$
Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$
On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$
Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$
In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$
$$I(r)=int_{-infty}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}=int_{-frac 12}^{infty} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}+int_{-infty}^{-frac 12} frac {dx}{left(left(x+frac 12right)^2+frac 34right)^r}$$
Substitute $x+frac 12=u$
$$I(r)=int_0^{infty} frac {du}{left(u^2+frac 34right)^r}+int_{-infty}^0 frac {du}{left(u^2+frac 34right)^r}$$
Since the integrand is even we get $$I(r)=2int_0^{infty} frac {du}{left(u^2+frac34right)^r}=frac {2cdot 4^r}{3^r} int_0^{infty} frac {du}{left(frac {4u^2}{3}+ 1right)^r}$$
On substituting $frac {4u^2}{3}=t$ we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} int_0^{infty} frac {t^{-frac 12} dt}{(1+t)^r}$$
Now using the definition of Beta function and it's relation with Gamma function we get $$I(r)=frac {2cdot 4^{r-1}}{3^{r-frac12}} Bleft(frac 12,r-frac 12right) =frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {Gammaleft(frac 12right)Gammaleft(r-frac 12right)}{Gamma(r)}=frac {2cdot 4^{r-1}}{3^{r-frac12}} frac {sqrt {pi}cdot Gammaleft(r-frac 12right)}{Gamma(r)}$$
In general it can be proved that $$I(a,b,r)=int_{-infty}^{infty} frac {dx}{(x^2+2ax+b^2)^r} = frac {sqrt {pi}cdotGammaleft(r-frac 12right)}{Gamma(r)} left(frac {1}{b^2-a^2}right)^{r-frac 12}$$ if $vert bvert gt vert avert$
edited yesterday
answered yesterday
Digamma
5,8001437
5,8001437
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994751%2fprove-int-infty-infty-frac1x2x13dx-frac4-pi3-sqrt3%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Try completing the square and then trig substituting.
– Kemono Chen
yesterday