Suppose that $f (x, y) = xe^{−x(y+1)}$, where $0 ≤ x < ∞$, $0 ≤ y < ∞$. Find marginal...
$begingroup$
This question comes from rice 3.14
Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
> ∞$
a. Find the marginal densities of X and Y . Are X and Y independent?
b. Find the conditional densities of X and Y
to find the marginal densities i have integrated out $x$ and $y$ such that:
begin{align}
f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
& = x int_0^infty e^{−x(y+1)} dx\
& = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
& = -frac{x}{y+2} space text{for} 0leq x < infty
end{align}
begin{align}
f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
end{align}
but i get stuck here. How to solve the integral? is the first marginal distribution correct?
statistics probability-distributions definite-integrals exponential-distribution
$endgroup$
add a comment |
$begingroup$
This question comes from rice 3.14
Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
> ∞$
a. Find the marginal densities of X and Y . Are X and Y independent?
b. Find the conditional densities of X and Y
to find the marginal densities i have integrated out $x$ and $y$ such that:
begin{align}
f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
& = x int_0^infty e^{−x(y+1)} dx\
& = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
& = -frac{x}{y+2} space text{for} 0leq x < infty
end{align}
begin{align}
f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
end{align}
but i get stuck here. How to solve the integral? is the first marginal distribution correct?
statistics probability-distributions definite-integrals exponential-distribution
$endgroup$
add a comment |
$begingroup$
This question comes from rice 3.14
Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
> ∞$
a. Find the marginal densities of X and Y . Are X and Y independent?
b. Find the conditional densities of X and Y
to find the marginal densities i have integrated out $x$ and $y$ such that:
begin{align}
f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
& = x int_0^infty e^{−x(y+1)} dx\
& = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
& = -frac{x}{y+2} space text{for} 0leq x < infty
end{align}
begin{align}
f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
end{align}
but i get stuck here. How to solve the integral? is the first marginal distribution correct?
statistics probability-distributions definite-integrals exponential-distribution
$endgroup$
This question comes from rice 3.14
Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
> ∞$
a. Find the marginal densities of X and Y . Are X and Y independent?
b. Find the conditional densities of X and Y
to find the marginal densities i have integrated out $x$ and $y$ such that:
begin{align}
f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
& = x int_0^infty e^{−x(y+1)} dx\
& = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
& = -frac{x}{y+2} space text{for} 0leq x < infty
end{align}
begin{align}
f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
end{align}
but i get stuck here. How to solve the integral? is the first marginal distribution correct?
statistics probability-distributions definite-integrals exponential-distribution
statistics probability-distributions definite-integrals exponential-distribution
edited Dec 13 '18 at 9:51
TZakrevskiy
20.2k12354
20.2k12354
asked Dec 12 '18 at 9:21
user1607user1607
1718
1718
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$
$endgroup$
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036450%2fsuppose-that-f-x-y-xe%25e2%2588%2592xy1-where-0-%25e2%2589%25a4-x-%25e2%2588%259e-0-%25e2%2589%25a4-y-%25e2%2588%259e-find-mar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$
$endgroup$
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
add a comment |
$begingroup$
$$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$
$endgroup$
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
add a comment |
$begingroup$
$$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$
$endgroup$
$$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$
edited Dec 12 '18 at 9:30
answered Dec 12 '18 at 9:24
Kavi Rama MurthyKavi Rama Murthy
71.7k53170
71.7k53170
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
add a comment |
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
$begingroup$
could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
$endgroup$
– user1607
Dec 12 '18 at 18:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036450%2fsuppose-that-f-x-y-xe%25e2%2588%2592xy1-where-0-%25e2%2589%25a4-x-%25e2%2588%259e-0-%25e2%2589%25a4-y-%25e2%2588%259e-find-mar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown