Suppose that $f (x, y) = xe^{−x(y+1)}$, where $0 ≤ x < ∞$, $0 ≤ y < ∞$. Find marginal...












0












$begingroup$


This question comes from rice 3.14




Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
> ∞$

a. Find the marginal densities of X and Y . Are X and Y independent?
b. Find the conditional densities of X and Y




to find the marginal densities i have integrated out $x$ and $y$ such that:



begin{align}
f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
& = x int_0^infty e^{−x(y+1)} dx\
& = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
& = -frac{x}{y+2} space text{for} 0leq x < infty
end{align}



begin{align}
f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
end{align}



but i get stuck here. How to solve the integral? is the first marginal distribution correct?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    This question comes from rice 3.14




    Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
    > ∞$

    a. Find the marginal densities of X and Y . Are X and Y independent?
    b. Find the conditional densities of X and Y




    to find the marginal densities i have integrated out $x$ and $y$ such that:



    begin{align}
    f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
    & = x int_0^infty e^{−x(y+1)} dx\
    & = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
    & = -frac{x}{y+2} space text{for} 0leq x < infty
    end{align}



    begin{align}
    f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
    end{align}



    but i get stuck here. How to solve the integral? is the first marginal distribution correct?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      This question comes from rice 3.14




      Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
      > ∞$

      a. Find the marginal densities of X and Y . Are X and Y independent?
      b. Find the conditional densities of X and Y




      to find the marginal densities i have integrated out $x$ and $y$ such that:



      begin{align}
      f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
      & = x int_0^infty e^{−x(y+1)} dx\
      & = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
      & = -frac{x}{y+2} space text{for} 0leq x < infty
      end{align}



      begin{align}
      f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
      end{align}



      but i get stuck here. How to solve the integral? is the first marginal distribution correct?










      share|cite|improve this question











      $endgroup$




      This question comes from rice 3.14




      Suppose that $$f (x, y) = xe^{−x(y+1)}$$ where $0 ≤ x < ∞$, $0 ≤ y <
      > ∞$

      a. Find the marginal densities of X and Y . Are X and Y independent?
      b. Find the conditional densities of X and Y




      to find the marginal densities i have integrated out $x$ and $y$ such that:



      begin{align}
      f_X(x) & = int_0^infty xe^{−x(y+1)} dx \
      & = x int_0^infty e^{−x(y+1)} dx\
      & = x Big[ frac{e^{−x(y+2)}}{y+2} Big]_0^infty\
      & = -frac{x}{y+2} space text{for} 0leq x < infty
      end{align}



      begin{align}
      f_Y(y) & = int_0^infty xe^{−x(y+1)} dy \
      end{align}



      but i get stuck here. How to solve the integral? is the first marginal distribution correct?







      statistics probability-distributions definite-integrals exponential-distribution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 13 '18 at 9:51









      TZakrevskiy

      20.2k12354




      20.2k12354










      asked Dec 12 '18 at 9:21









      user1607user1607

      1718




      1718






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          $$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
            $endgroup$
            – user1607
            Dec 12 '18 at 18:10














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036450%2fsuppose-that-f-x-y-xe%25e2%2588%2592xy1-where-0-%25e2%2589%25a4-x-%25e2%2588%259e-0-%25e2%2589%25a4-y-%25e2%2588%259e-find-mar%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          $$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
            $endgroup$
            – user1607
            Dec 12 '18 at 18:10


















          1












          $begingroup$

          $$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
            $endgroup$
            – user1607
            Dec 12 '18 at 18:10
















          1












          1








          1





          $begingroup$

          $$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$






          share|cite|improve this answer











          $endgroup$



          $$f_Y (y)=int_0^{infty} xe^{-x(y+1)}dx$$ $$=-frac x {y+1}e^{-x(y+1)}|_0^{infty} +frac 1 {y+1} int_0^{infty}e^{-x(y+1)}dx$$ $$=frac 1{(y+1)^{2}}.$$ $f_X(x)$ is easier: $f_X (x)=int_0^{infty} xe^{-x(y+1)}dy=xe^{-x} int_0^{infty} e^{-xy} dy=e^{-x}$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 12 '18 at 9:30

























          answered Dec 12 '18 at 9:24









          Kavi Rama MurthyKavi Rama Murthy

          71.7k53170




          71.7k53170












          • $begingroup$
            could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
            $endgroup$
            – user1607
            Dec 12 '18 at 18:10




















          • $begingroup$
            could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
            $endgroup$
            – user1607
            Dec 12 '18 at 18:10


















          $begingroup$
          could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
          $endgroup$
          – user1607
          Dec 12 '18 at 18:10






          $begingroup$
          could you break down the steps of how you obtaine the $f_Y(y)$. I have tries integration per partes twice, but i must be doing a mistake somewhere
          $endgroup$
          – user1607
          Dec 12 '18 at 18:10




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036450%2fsuppose-that-f-x-y-xe%25e2%2588%2592xy1-where-0-%25e2%2589%25a4-x-%25e2%2588%259e-0-%25e2%2589%25a4-y-%25e2%2588%259e-find-mar%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

          Can I use Tabulator js library in my java Spring + Thymeleaf project?