Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular...
$begingroup$
Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then
$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$
So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $
Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$
But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text
linear-algebra matrices determinant inverse block-matrices
$endgroup$
add a comment |
$begingroup$
Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then
$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$
So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $
Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$
But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text
linear-algebra matrices determinant inverse block-matrices
$endgroup$
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26
add a comment |
$begingroup$
Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then
$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$
So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $
Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$
But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text
linear-algebra matrices determinant inverse block-matrices
$endgroup$
Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then
$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$
So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $
Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$
But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text
linear-algebra matrices determinant inverse block-matrices
linear-algebra matrices determinant inverse block-matrices
edited Dec 12 '18 at 12:00
Batominovski
33.1k33293
33.1k33293
asked Dec 12 '18 at 10:21
DanielvanheuvenDanielvanheuven
477
477
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26
add a comment |
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
I would first try to calculate
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
and show that this equals the identity matrix.
$endgroup$
add a comment |
$begingroup$
Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
As $A$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
Since $D-CA^{-1}B$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
Consequently,
$$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
That is,
$$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
Hence,
$$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$
Similarly,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
Thus,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
Because $B-AC^{-1}D$ is invertible,
$$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Thence,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$
From (*) and (#), we conclude that
$$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
That is,
$$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
Hence,
$$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
This shows that
$$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
If $D$ is invertible, then
$$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
provided that $B-D^{-1}C$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$
If $B$ is invertible, then
$$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
provided that $C-DB^{-1}A$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$
In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.
$endgroup$
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
add a comment |
$begingroup$
This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:
Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
$$
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
$$
Now subtract the first block column $B$-times from the second:
$$
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
$$
Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
$$
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
$$
Finally subtract the second block column $CA^{-1}$-times from the first block column
$$
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
$$
In summary, you obtained
begin{align*}
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
&=
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
&=
left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
end{align*}
using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.
Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036501%2flet-a-b-c-d-in-mathbbrn%25c3%2597n-show-that-if-a-c-b%25e2%2588%2592ac%25e2%2588%25921d-and-d%25e2%2588%2592ca%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
I would first try to calculate
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
and show that this equals the identity matrix.
$endgroup$
add a comment |
$begingroup$
To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
I would first try to calculate
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
and show that this equals the identity matrix.
$endgroup$
add a comment |
$begingroup$
To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
I would first try to calculate
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
and show that this equals the identity matrix.
$endgroup$
To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
I would first try to calculate
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$
and show that this equals the identity matrix.
answered Dec 12 '18 at 10:23
5xum5xum
91.8k394161
91.8k394161
add a comment |
add a comment |
$begingroup$
Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
As $A$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
Since $D-CA^{-1}B$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
Consequently,
$$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
That is,
$$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
Hence,
$$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$
Similarly,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
Thus,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
Because $B-AC^{-1}D$ is invertible,
$$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Thence,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$
From (*) and (#), we conclude that
$$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
That is,
$$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
Hence,
$$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
This shows that
$$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
If $D$ is invertible, then
$$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
provided that $B-D^{-1}C$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$
If $B$ is invertible, then
$$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
provided that $C-DB^{-1}A$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$
In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.
$endgroup$
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
add a comment |
$begingroup$
Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
As $A$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
Since $D-CA^{-1}B$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
Consequently,
$$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
That is,
$$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
Hence,
$$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$
Similarly,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
Thus,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
Because $B-AC^{-1}D$ is invertible,
$$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Thence,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$
From (*) and (#), we conclude that
$$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
That is,
$$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
Hence,
$$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
This shows that
$$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
If $D$ is invertible, then
$$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
provided that $B-D^{-1}C$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$
If $B$ is invertible, then
$$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
provided that $C-DB^{-1}A$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$
In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.
$endgroup$
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
add a comment |
$begingroup$
Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
As $A$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
Since $D-CA^{-1}B$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
Consequently,
$$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
That is,
$$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
Hence,
$$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$
Similarly,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
Thus,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
Because $B-AC^{-1}D$ is invertible,
$$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Thence,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$
From (*) and (#), we conclude that
$$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
That is,
$$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
Hence,
$$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
This shows that
$$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
If $D$ is invertible, then
$$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
provided that $B-D^{-1}C$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$
If $B$ is invertible, then
$$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
provided that $C-DB^{-1}A$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$
In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.
$endgroup$
Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
As $A$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
Since $D-CA^{-1}B$ is invertible,
$$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
Consequently,
$$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
That is,
$$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
Hence,
$$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$
Similarly,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
Thus,
$$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
Because $B-AC^{-1}D$ is invertible,
$$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
Thence,
$$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$
From (*) and (#), we conclude that
$$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
That is,
$$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
Hence,
$$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
This shows that
$$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
If $D$ is invertible, then
$$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
provided that $B-D^{-1}C$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$
If $B$ is invertible, then
$$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
Ergo,
$$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
provided that $C-DB^{-1}A$ is nonsingular. Thus,
$$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
or
$$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$
In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
$$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.
edited Dec 12 '18 at 12:01
answered Dec 12 '18 at 11:01
BatominovskiBatominovski
33.1k33293
33.1k33293
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
add a comment |
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
2
2
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
$begingroup$
Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
$endgroup$
– Batominovski
Dec 12 '18 at 15:31
add a comment |
$begingroup$
This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:
Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
$$
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
$$
Now subtract the first block column $B$-times from the second:
$$
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
$$
Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
$$
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
$$
Finally subtract the second block column $CA^{-1}$-times from the first block column
$$
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
$$
In summary, you obtained
begin{align*}
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
&=
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
&=
left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
end{align*}
using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.
Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.
$endgroup$
add a comment |
$begingroup$
This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:
Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
$$
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
$$
Now subtract the first block column $B$-times from the second:
$$
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
$$
Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
$$
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
$$
Finally subtract the second block column $CA^{-1}$-times from the first block column
$$
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
$$
In summary, you obtained
begin{align*}
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
&=
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
&=
left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
end{align*}
using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.
Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.
$endgroup$
add a comment |
$begingroup$
This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:
Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
$$
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
$$
Now subtract the first block column $B$-times from the second:
$$
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
$$
Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
$$
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
$$
Finally subtract the second block column $CA^{-1}$-times from the first block column
$$
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
$$
In summary, you obtained
begin{align*}
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
&=
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
&=
left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
end{align*}
using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.
Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.
$endgroup$
This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:
Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
$$
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
$$
Now subtract the first block column $B$-times from the second:
$$
left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
$$
Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
$$
left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
=
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
$$
Finally subtract the second block column $CA^{-1}$-times from the first block column
$$
left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
=
left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
$$
In summary, you obtained
begin{align*}
left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
&=
left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
&=
left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
end{align*}
using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.
Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.
edited Dec 12 '18 at 11:56
answered Dec 12 '18 at 11:50
ChristophChristoph
12.5k1642
12.5k1642
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036501%2flet-a-b-c-d-in-mathbbrn%25c3%2597n-show-that-if-a-c-b%25e2%2588%2592ac%25e2%2588%25921d-and-d%25e2%2588%2592ca%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26