Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular...












1












$begingroup$


Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then



$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$



So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $



Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$



But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text










share|cite|improve this question











$endgroup$












  • $begingroup$
    The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:26
















1












$begingroup$


Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then



$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$



So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $



Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$



But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text










share|cite|improve this question











$endgroup$












  • $begingroup$
    The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:26














1












1








1





$begingroup$


Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then



$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$



So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $



Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$



But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text










share|cite|improve this question











$endgroup$




Let $A,B,C,D in mathbb{R}^{n×n}$. Show that if $A, C, B−AC^{−1}D,$ and $D−CA^{−1}B$ are nonsingular then



$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$



So i think that probably i have to use The Determinant and the adjacency matrix but then i get determinant =
$AD - BC $



Adjacency matrix $= left[ begin{smallmatrix} D&-B\ -C&A end{smallmatrix} right]$



But i cant divide the determinant by the adjacency matrix because AD - BC doesnt have an inverse so what do i do?emphasized text







linear-algebra matrices determinant inverse block-matrices






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 12:00









Batominovski

33.1k33293




33.1k33293










asked Dec 12 '18 at 10:21









DanielvanheuvenDanielvanheuven

477




477












  • $begingroup$
    The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:26


















  • $begingroup$
    The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
    $endgroup$
    – Christoph
    Dec 12 '18 at 10:26
















$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26




$begingroup$
The determinant of a real matrix is a real number, note that $AD-BC$ is a matrix!
$endgroup$
– Christoph
Dec 12 '18 at 10:26










3 Answers
3






active

oldest

votes


















1












$begingroup$

To prove that
$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



I would first try to calculate



$$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



and show that this equals the identity matrix.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
    As $A$ is invertible,
    $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
    Since $D-CA^{-1}B$ is invertible,
    $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
    Consequently,
    $$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
    That is,
    $$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
    Hence,
    $$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$



    Similarly,
    $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
    Thus,
    $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
    Because $B-AC^{-1}D$ is invertible,
    $$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
    Ergo,
    $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
    Thence,
    $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$



    From (*) and (#), we conclude that
    $$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
    That is,
    $$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
    Hence,
    $$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
    This shows that
    $$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$





    If $D$ is invertible, then
    $$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
    Ergo,
    $$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
    provided that $B-D^{-1}C$ is nonsingular. Thus,
    $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
    or
    $$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$



    If $B$ is invertible, then
    $$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
    Ergo,
    $$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
    provided that $C-DB^{-1}A$ is nonsingular. Thus,
    $$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
    or
    $$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$



    In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
    $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
    While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.






    share|cite|improve this answer











    $endgroup$









    • 2




      $begingroup$
      Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
      $endgroup$
      – Batominovski
      Dec 12 '18 at 15:31



















    0












    $begingroup$

    This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:



    Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
    $$
    left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
    left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
    =
    left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
    $$

    Now subtract the first block column $B$-times from the second:
    $$
    left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
    left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
    =
    left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
    $$

    Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
    $$
    left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
    left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
    =
    left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
    $$

    Finally subtract the second block column $CA^{-1}$-times from the first block column
    $$
    left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
    left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
    =
    left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
    $$

    In summary, you obtained
    begin{align*}
    left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
    &=
    left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
    left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
    left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
    left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
    &=
    left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
    end{align*}

    using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.



    Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036501%2flet-a-b-c-d-in-mathbbrn%25c3%2597n-show-that-if-a-c-b%25e2%2588%2592ac%25e2%2588%25921d-and-d%25e2%2588%2592ca%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      To prove that
      $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



      I would first try to calculate



      $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



      and show that this equals the identity matrix.






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        To prove that
        $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



        I would first try to calculate



        $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



        and show that this equals the identity matrix.






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          To prove that
          $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



          I would first try to calculate



          $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



          and show that this equals the identity matrix.






          share|cite|improve this answer









          $endgroup$



          To prove that
          $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]^{-1} = left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



          I would first try to calculate



          $$left[ begin{smallmatrix} A&B\ C&D end{smallmatrix} right]cdot left[ begin{smallmatrix} A^{-1} - A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\ (B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1} end{smallmatrix} right]$$



          and show that this equals the identity matrix.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 12 '18 at 10:23









          5xum5xum

          91.8k394161




          91.8k394161























              1












              $begingroup$

              Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
              As $A$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
              Since $D-CA^{-1}B$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
              Consequently,
              $$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              That is,
              $$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              Hence,
              $$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$



              Similarly,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
              Thus,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
              Because $B-AC^{-1}D$ is invertible,
              $$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Thence,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$



              From (*) and (#), we conclude that
              $$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
              That is,
              $$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
              Hence,
              $$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
              This shows that
              $$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$





              If $D$ is invertible, then
              $$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              provided that $B-D^{-1}C$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$



              If $B$ is invertible, then
              $$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              provided that $C-DB^{-1}A$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$



              In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
              While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.






              share|cite|improve this answer











              $endgroup$









              • 2




                $begingroup$
                Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
                $endgroup$
                – Batominovski
                Dec 12 '18 at 15:31
















              1












              $begingroup$

              Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
              As $A$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
              Since $D-CA^{-1}B$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
              Consequently,
              $$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              That is,
              $$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              Hence,
              $$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$



              Similarly,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
              Thus,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
              Because $B-AC^{-1}D$ is invertible,
              $$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Thence,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$



              From (*) and (#), we conclude that
              $$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
              That is,
              $$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
              Hence,
              $$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
              This shows that
              $$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$





              If $D$ is invertible, then
              $$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              provided that $B-D^{-1}C$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$



              If $B$ is invertible, then
              $$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              provided that $C-DB^{-1}A$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$



              In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
              While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.






              share|cite|improve this answer











              $endgroup$









              • 2




                $begingroup$
                Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
                $endgroup$
                – Batominovski
                Dec 12 '18 at 15:31














              1












              1








              1





              $begingroup$

              Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
              As $A$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
              Since $D-CA^{-1}B$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
              Consequently,
              $$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              That is,
              $$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              Hence,
              $$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$



              Similarly,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
              Thus,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
              Because $B-AC^{-1}D$ is invertible,
              $$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Thence,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$



              From (*) and (#), we conclude that
              $$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
              That is,
              $$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
              Hence,
              $$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
              This shows that
              $$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$





              If $D$ is invertible, then
              $$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              provided that $B-D^{-1}C$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$



              If $B$ is invertible, then
              $$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              provided that $C-DB^{-1}A$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$



              In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
              While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.






              share|cite|improve this answer











              $endgroup$



              Let $I$ denote the $n$-by-$n$ identity matrix. For simplicity, let $$X:=begin{bmatrix}A&B\C&Dend{bmatrix},.$$
              As $A$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&B\0&D-CA^{-1}Bend{bmatrix},.$$
              Since $D-CA^{-1}B$ is invertible,
              $$X=begin{bmatrix}I&0\CA^{-1}&Iend{bmatrix},begin{bmatrix}A&0\0&D-CA^{-1}Bend{bmatrix},begin{bmatrix}I&A^{-1}B\0&Iend{bmatrix},.$$
              Consequently,
              $$X^{-1}=begin{bmatrix}I&-A^{-1}B\0&Iend{bmatrix},begin{bmatrix}A^{-1}&0\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              That is,
              $$X^{-1}=begin{bmatrix}A^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\0&(D-CA^{-1}B)^{-1}end{bmatrix},begin{bmatrix}I&0\-CA^{-1}&Iend{bmatrix},.$$
              Hence,
              $$X^{-1}=begin{bmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.tag{*}$$



              Similarly,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&Dend{bmatrix},.$$
              Thus,
              $$X=begin{bmatrix}I&AC^{-1}\0&Iend{bmatrix},begin{bmatrix}0&B-AC^{-1}D\C&0end{bmatrix},begin{bmatrix}I&C^{-1}D\0&Iend{bmatrix},.$$
              Because $B-AC^{-1}D$ is invertible,
              $$X^{-1}=begin{bmatrix}I&-C^{-1}D\0&Iend{bmatrix},begin{bmatrix}0&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1}&C^{-1}\(B-AC^{-1}D)^{-1}&0end{bmatrix},begin{bmatrix}I&-AC^{-1}\0&Iend{bmatrix},.$$
              Thence,
              $$X^{-1}=begin{bmatrix}-C^{-1}D(B-AC^{-1}D)^{-1} & C^{-1}+C^{-1}D(B-AC^{-1}D)^{-1}AC^{-1}\ (B-AC^{-1}D)^{-1}& -(B-AC^{-1}D)^{-1}AC^{-1}end{bmatrix},.tag{#}$$



              From (*) and (#), we conclude that
              $$ (D-CA^{-1}B)^{-1}=-(B-AC^{-1}D)^{-1}AC^{-1},.$$
              That is,
              $$(D-CA^{-1}B)^{-1}CA^{-1}=-(B-AC^{-1}D)^{-1},.$$
              Hence,
              $$A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}=A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1},.$$
              This shows that
              $$X=begin{bmatrix}A^{-1}-A^{-1}B(B-AC^{-1}D)^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$





              If $D$ is invertible, then
              $$X=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\C &Dend{bmatrix}=begin{bmatrix}I&BD^{-1}\0&Iend{bmatrix},begin{bmatrix}A-BD^{-1}C&0\0 &Dend{bmatrix},begin{bmatrix}I&0\D^{-1}C&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-D^{-1}C&Iend{bmatrix},begin{bmatrix}(A-BD^{-1}C)^{-1}&0\0 &D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              provided that $B-D^{-1}C$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1} & 0\-D^{-1}C(A-BD^{-1}C)^{-1} & D^{-1}end{bmatrix},begin{bmatrix}I&-BD^{-1}\0&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} (A-BD^{-1}C)^{-1} & -(A-BD^{-1}C)^{-1} BD^{-1}\ -D^{-1}C(A-BD^{-1}C)^{-1}& D^{-1}+D^{-1}C(A-BD^{-1}C)^{-1}BD^{-1}end{bmatrix},.tag{@}$$



              If $B$ is invertible, then
              $$X=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}A&B\C -DB^{-1}A&0end{bmatrix}=begin{bmatrix}I&0\DB^{-1}&Iend{bmatrix},begin{bmatrix}0&B\C-DB^{-1}A &0end{bmatrix},begin{bmatrix}I&0\B^{-1}A&Iend{bmatrix},.$$
              Ergo,
              $$X^{-1}=begin{bmatrix}I&0\-B^{-1}A&Iend{bmatrix},begin{bmatrix}0&(C-DB^{-1}A )^{-1}\B^{-1} &0end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              provided that $C-DB^{-1}A$ is nonsingular. Thus,
              $$X^{-1}=begin{bmatrix}0 & (C-DB^{-1}A )^{-1}\B^{-1} & -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},begin{bmatrix}I&0\-DB^{-1}&Iend{bmatrix},,$$
              or
              $$X=begin{bmatrix} -(C-DB^{-1}A )^{-1}DB^{-1} & (C-DB^{-1}A )^{-1}\B^{-1}+B^{-1}A(C-DB^{-1}A )^{-1}DB^{-1}& -B^{-1}A(C-DB^{-1}A )^{-1}end{bmatrix},.tag{$}$$



              In the special case where $A,B,C,D$ are invertible matrices such that $A-BD^{-1}C$, $B-AC^{-1}D$, $C-DB^{-1}A$, and $D-CA^{-1}B$ are all nonsingular, we have the following compact form of $X^{-1}$:
              $$X^{-1}=begin{bmatrix}(A-BD^{-1}C)^{-1}&(C-DB^{-1}A)^{-1}\(B-AC^{-1}D)^{-1}&(D-CA^{-1}B)^{-1}end{bmatrix},.$$
              While this looks nice, I think it is computationally more expensive than using (*), (#), (@), or ($) alone.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 12 '18 at 12:01

























              answered Dec 12 '18 at 11:01









              BatominovskiBatominovski

              33.1k33293




              33.1k33293








              • 2




                $begingroup$
                Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
                $endgroup$
                – Batominovski
                Dec 12 '18 at 15:31














              • 2




                $begingroup$
                Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
                $endgroup$
                – Batominovski
                Dec 12 '18 at 15:31








              2




              2




              $begingroup$
              Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
              $endgroup$
              – Batominovski
              Dec 12 '18 at 15:31




              $begingroup$
              Note by the way that, if $A$ is invertible, then $X$ is invertible if and only if $D-CA^{-1}B$ is invertible. Similarly, if $B$ is invertible, then $X$ is invertible if and only if $C-DB^{-1}A$ is invertible. If $C$ is invertible, then $X$ is invertible if and only if $B-AC^{-1}D$ is invertible. Finally, if $D$ is invertible, then $X$ is invertible if and only if $A-BD^{-1}C$ is invertible.
              $endgroup$
              – Batominovski
              Dec 12 '18 at 15:31











              0












              $begingroup$

              This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:



              Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
              $$
              left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
              left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
              =
              left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
              $$

              Now subtract the first block column $B$-times from the second:
              $$
              left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
              left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
              =
              left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
              $$

              Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
              $$
              left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
              left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
              =
              left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
              $$

              Finally subtract the second block column $CA^{-1}$-times from the first block column
              $$
              left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
              left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
              =
              left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
              $$

              In summary, you obtained
              begin{align*}
              left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
              &=
              left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
              left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
              left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
              left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
              &=
              left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
              end{align*}

              using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.



              Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:



                Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
                $$
                left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
                left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                =
                left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
                $$

                Now subtract the first block column $B$-times from the second:
                $$
                left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
                left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                =
                left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
                $$

                Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
                $$
                left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
                left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                =
                left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
                $$

                Finally subtract the second block column $CA^{-1}$-times from the first block column
                $$
                left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
                left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
                =
                left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
                $$

                In summary, you obtained
                begin{align*}
                left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
                &=
                left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
                &=
                left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                end{align*}

                using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.



                Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:



                  Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
                  $$
                  left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
                  left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
                  $$

                  Now subtract the first block column $B$-times from the second:
                  $$
                  left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
                  left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
                  $$

                  Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
                  $$
                  left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
                  $$

                  Finally subtract the second block column $CA^{-1}$-times from the first block column
                  $$
                  left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
                  $$

                  In summary, you obtained
                  begin{align*}
                  left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
                  &=
                  left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
                  &=
                  left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  end{align*}

                  using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.



                  Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.






                  share|cite|improve this answer











                  $endgroup$



                  This is what you get from performing a blockwise Gaussian elimination on colums, assuming everything is invertible when you need it:



                  Starting with $left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]$ you want to multiply the first block of colums by $A^{-1}$, you obtain
                  $$
                  left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]
                  left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right].
                  $$

                  Now subtract the first block column $B$-times from the second:
                  $$
                  left[begin{smallmatrix}I&B\CA^{-1}&Dend{smallmatrix}right]
                  left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right].
                  $$

                  Now you want to get an $I$ in the lower right block, so you multiply the second column block by $(D-CA^{-1}B)^{-1}$ to obtain
                  $$
                  left[begin{smallmatrix}I&0\CA^{-1}&D-CA^{-1}Bend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right].
                  $$

                  Finally subtract the second block column $CA^{-1}$-times from the first block column
                  $$
                  left[begin{smallmatrix}I&0\CA^{-1}&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right]
                  =
                  left[begin{smallmatrix}I&0\0&Iend{smallmatrix}right].
                  $$

                  In summary, you obtained
                  begin{align*}
                  left[begin{smallmatrix}A&B\C&Dend{smallmatrix}right]^{-1}
                  &=
                  left[begin{smallmatrix}A^{-1}&0\0&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&-B\0&Iend{smallmatrix}right]
                  left[begin{smallmatrix}I&0\0&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  left[begin{smallmatrix}I&0\-CA^{-1}&Iend{smallmatrix}right] \
                  &=
                  left[begin{smallmatrix}A^{-1}+A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1}&-A^{-1}B(D-CA^{-1}B)^{-1}\-(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}end{smallmatrix}right]
                  end{align*}

                  using only the assumptions that $A$ and $D-CA^{-1}B$ are invertible.



                  Assuming that $C$ and $B-AC^{-1}D$ are also invertible, you can simplify this to the matrix in your question by using $Y^{-1} Z = (Z^{-1} Y)^{-1}$ a few times.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Dec 12 '18 at 11:56

























                  answered Dec 12 '18 at 11:50









                  ChristophChristoph

                  12.5k1642




                  12.5k1642






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036501%2flet-a-b-c-d-in-mathbbrn%25c3%2597n-show-that-if-a-c-b%25e2%2588%2592ac%25e2%2588%25921d-and-d%25e2%2588%2592ca%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      How to change which sound is reproduced for terminal bell?

                      Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?