$A_1,A_2$ fulfill property, but their sum $A_1+A_2$ does not












1












$begingroup$


Let $V$ be a real, reflexive, separable Banach space.
Are there operators $A_1,A_2: V to V^*$ that fulfill the property
begin{cases}
u_n rightharpoonup u \
A_iu_n rightharpoonup b \
limsup_{n to infty} langle A_iu_n,u_nrangleleqlangle b,urangle
end{cases}
implying $A_iu=b$
for a sequence $(u_n)_{n in mathbb N}$ in $V$, $b in V^*$, but their sum $A_1+A_2$ doesn't?



My work:



$(A_1+A_2)u_n=A_1u_n+A_2u_n rightharpoonup2b in V^*$ and
$limsup, langle (A_1+A_2)u_n,u_n rangle=limsup langle A_1u_n,u_n rangle+limsup langle A_2u_n,u_n rangle leq 2 langle b,urangle$
So I think I need to find $A_1,A_2$ fulfilling the property but $(A_1+A_2)u neq 2b?$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Any thoughts on the given problem ?
    $endgroup$
    – Rebellos
    Dec 12 '18 at 9:36










  • $begingroup$
    Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
    $endgroup$
    – gerw
    Dec 12 '18 at 10:38










  • $begingroup$
    @gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
    $endgroup$
    – Tesla
    Dec 12 '18 at 11:05










  • $begingroup$
    Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
    $endgroup$
    – daw
    Dec 12 '18 at 13:42










  • $begingroup$
    No it is not assumed
    $endgroup$
    – Tesla
    Dec 12 '18 at 14:40
















1












$begingroup$


Let $V$ be a real, reflexive, separable Banach space.
Are there operators $A_1,A_2: V to V^*$ that fulfill the property
begin{cases}
u_n rightharpoonup u \
A_iu_n rightharpoonup b \
limsup_{n to infty} langle A_iu_n,u_nrangleleqlangle b,urangle
end{cases}
implying $A_iu=b$
for a sequence $(u_n)_{n in mathbb N}$ in $V$, $b in V^*$, but their sum $A_1+A_2$ doesn't?



My work:



$(A_1+A_2)u_n=A_1u_n+A_2u_n rightharpoonup2b in V^*$ and
$limsup, langle (A_1+A_2)u_n,u_n rangle=limsup langle A_1u_n,u_n rangle+limsup langle A_2u_n,u_n rangle leq 2 langle b,urangle$
So I think I need to find $A_1,A_2$ fulfilling the property but $(A_1+A_2)u neq 2b?$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Any thoughts on the given problem ?
    $endgroup$
    – Rebellos
    Dec 12 '18 at 9:36










  • $begingroup$
    Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
    $endgroup$
    – gerw
    Dec 12 '18 at 10:38










  • $begingroup$
    @gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
    $endgroup$
    – Tesla
    Dec 12 '18 at 11:05










  • $begingroup$
    Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
    $endgroup$
    – daw
    Dec 12 '18 at 13:42










  • $begingroup$
    No it is not assumed
    $endgroup$
    – Tesla
    Dec 12 '18 at 14:40














1












1








1





$begingroup$


Let $V$ be a real, reflexive, separable Banach space.
Are there operators $A_1,A_2: V to V^*$ that fulfill the property
begin{cases}
u_n rightharpoonup u \
A_iu_n rightharpoonup b \
limsup_{n to infty} langle A_iu_n,u_nrangleleqlangle b,urangle
end{cases}
implying $A_iu=b$
for a sequence $(u_n)_{n in mathbb N}$ in $V$, $b in V^*$, but their sum $A_1+A_2$ doesn't?



My work:



$(A_1+A_2)u_n=A_1u_n+A_2u_n rightharpoonup2b in V^*$ and
$limsup, langle (A_1+A_2)u_n,u_n rangle=limsup langle A_1u_n,u_n rangle+limsup langle A_2u_n,u_n rangle leq 2 langle b,urangle$
So I think I need to find $A_1,A_2$ fulfilling the property but $(A_1+A_2)u neq 2b?$










share|cite|improve this question











$endgroup$




Let $V$ be a real, reflexive, separable Banach space.
Are there operators $A_1,A_2: V to V^*$ that fulfill the property
begin{cases}
u_n rightharpoonup u \
A_iu_n rightharpoonup b \
limsup_{n to infty} langle A_iu_n,u_nrangleleqlangle b,urangle
end{cases}
implying $A_iu=b$
for a sequence $(u_n)_{n in mathbb N}$ in $V$, $b in V^*$, but their sum $A_1+A_2$ doesn't?



My work:



$(A_1+A_2)u_n=A_1u_n+A_2u_n rightharpoonup2b in V^*$ and
$limsup, langle (A_1+A_2)u_n,u_n rangle=limsup langle A_1u_n,u_n rangle+limsup langle A_2u_n,u_n rangle leq 2 langle b,urangle$
So I think I need to find $A_1,A_2$ fulfilling the property but $(A_1+A_2)u neq 2b?$







functional-analysis operator-theory banach-spaces weak-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 12:11







Tesla

















asked Dec 12 '18 at 9:26









TeslaTesla

890426




890426








  • 1




    $begingroup$
    Any thoughts on the given problem ?
    $endgroup$
    – Rebellos
    Dec 12 '18 at 9:36










  • $begingroup$
    Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
    $endgroup$
    – gerw
    Dec 12 '18 at 10:38










  • $begingroup$
    @gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
    $endgroup$
    – Tesla
    Dec 12 '18 at 11:05










  • $begingroup$
    Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
    $endgroup$
    – daw
    Dec 12 '18 at 13:42










  • $begingroup$
    No it is not assumed
    $endgroup$
    – Tesla
    Dec 12 '18 at 14:40














  • 1




    $begingroup$
    Any thoughts on the given problem ?
    $endgroup$
    – Rebellos
    Dec 12 '18 at 9:36










  • $begingroup$
    Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
    $endgroup$
    – gerw
    Dec 12 '18 at 10:38










  • $begingroup$
    @gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
    $endgroup$
    – Tesla
    Dec 12 '18 at 11:05










  • $begingroup$
    Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
    $endgroup$
    – daw
    Dec 12 '18 at 13:42










  • $begingroup$
    No it is not assumed
    $endgroup$
    – Tesla
    Dec 12 '18 at 14:40








1




1




$begingroup$
Any thoughts on the given problem ?
$endgroup$
– Rebellos
Dec 12 '18 at 9:36




$begingroup$
Any thoughts on the given problem ?
$endgroup$
– Rebellos
Dec 12 '18 at 9:36












$begingroup$
Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
$endgroup$
– gerw
Dec 12 '18 at 10:38




$begingroup$
Should this property hold for one sequence $(u_n)$ or for all sequences $(u_n)$?
$endgroup$
– gerw
Dec 12 '18 at 10:38












$begingroup$
@gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
$endgroup$
– Tesla
Dec 12 '18 at 11:05




$begingroup$
@gerw for one sequence $(u_n)$.. and I forgot that the property implies $A_iu=b$..
$endgroup$
– Tesla
Dec 12 '18 at 11:05












$begingroup$
Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
$endgroup$
– daw
Dec 12 '18 at 13:42




$begingroup$
Are the operators $A_i$ assumed to be linear? The claim is trivially true for linear and continuous operators.
$endgroup$
– daw
Dec 12 '18 at 13:42












$begingroup$
No it is not assumed
$endgroup$
– Tesla
Dec 12 '18 at 14:40




$begingroup$
No it is not assumed
$endgroup$
– Tesla
Dec 12 '18 at 14:40










2 Answers
2






active

oldest

votes


















1












$begingroup$

Here is a counterexample. Let $V = mathbb{R}$ and
$$
A_1(x)=
begin{cases}
frac1x & text{if } x ne 0 \
42 & text{if } x = 0
end{cases}
$$

and
$$
A_2(x)=
begin{cases}
-frac1x & text{if } x ne 0 \
23 & text{if } x = 0
end{cases}
$$

Then, it is easy to check that $A_1$ and $A_2$ satisfy your property, but $A_1 + A_2$ does not satisfy it.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Hm thank you, but how does u have to be chosen? it does not work for me
    $endgroup$
    – Tesla
    Dec 15 '18 at 21:37










  • $begingroup$
    You have to choose $u = 0$.
    $endgroup$
    – gerw
    Dec 16 '18 at 18:56



















0












$begingroup$

No, this is not possible.



Using the linearity of $A$ in these properties and an inequality involving $limsup$,
it can be shown that $A_1+A_2$ fulfills the same properties.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
    $endgroup$
    – Tesla
    Dec 12 '18 at 10:01










  • $begingroup$
    I think my answer should still be true
    $endgroup$
    – supinf
    Dec 12 '18 at 10:15










  • $begingroup$
    You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
    $endgroup$
    – daw
    Dec 12 '18 at 19:21












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036458%2fa-1-a-2-fulfill-property-but-their-sum-a-1a-2-does-not%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Here is a counterexample. Let $V = mathbb{R}$ and
$$
A_1(x)=
begin{cases}
frac1x & text{if } x ne 0 \
42 & text{if } x = 0
end{cases}
$$

and
$$
A_2(x)=
begin{cases}
-frac1x & text{if } x ne 0 \
23 & text{if } x = 0
end{cases}
$$

Then, it is easy to check that $A_1$ and $A_2$ satisfy your property, but $A_1 + A_2$ does not satisfy it.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Hm thank you, but how does u have to be chosen? it does not work for me
    $endgroup$
    – Tesla
    Dec 15 '18 at 21:37










  • $begingroup$
    You have to choose $u = 0$.
    $endgroup$
    – gerw
    Dec 16 '18 at 18:56
















1












$begingroup$

Here is a counterexample. Let $V = mathbb{R}$ and
$$
A_1(x)=
begin{cases}
frac1x & text{if } x ne 0 \
42 & text{if } x = 0
end{cases}
$$

and
$$
A_2(x)=
begin{cases}
-frac1x & text{if } x ne 0 \
23 & text{if } x = 0
end{cases}
$$

Then, it is easy to check that $A_1$ and $A_2$ satisfy your property, but $A_1 + A_2$ does not satisfy it.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Hm thank you, but how does u have to be chosen? it does not work for me
    $endgroup$
    – Tesla
    Dec 15 '18 at 21:37










  • $begingroup$
    You have to choose $u = 0$.
    $endgroup$
    – gerw
    Dec 16 '18 at 18:56














1












1








1





$begingroup$

Here is a counterexample. Let $V = mathbb{R}$ and
$$
A_1(x)=
begin{cases}
frac1x & text{if } x ne 0 \
42 & text{if } x = 0
end{cases}
$$

and
$$
A_2(x)=
begin{cases}
-frac1x & text{if } x ne 0 \
23 & text{if } x = 0
end{cases}
$$

Then, it is easy to check that $A_1$ and $A_2$ satisfy your property, but $A_1 + A_2$ does not satisfy it.






share|cite|improve this answer









$endgroup$



Here is a counterexample. Let $V = mathbb{R}$ and
$$
A_1(x)=
begin{cases}
frac1x & text{if } x ne 0 \
42 & text{if } x = 0
end{cases}
$$

and
$$
A_2(x)=
begin{cases}
-frac1x & text{if } x ne 0 \
23 & text{if } x = 0
end{cases}
$$

Then, it is easy to check that $A_1$ and $A_2$ satisfy your property, but $A_1 + A_2$ does not satisfy it.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 13 '18 at 8:10









gerwgerw

19.8k11334




19.8k11334












  • $begingroup$
    Hm thank you, but how does u have to be chosen? it does not work for me
    $endgroup$
    – Tesla
    Dec 15 '18 at 21:37










  • $begingroup$
    You have to choose $u = 0$.
    $endgroup$
    – gerw
    Dec 16 '18 at 18:56


















  • $begingroup$
    Hm thank you, but how does u have to be chosen? it does not work for me
    $endgroup$
    – Tesla
    Dec 15 '18 at 21:37










  • $begingroup$
    You have to choose $u = 0$.
    $endgroup$
    – gerw
    Dec 16 '18 at 18:56
















$begingroup$
Hm thank you, but how does u have to be chosen? it does not work for me
$endgroup$
– Tesla
Dec 15 '18 at 21:37




$begingroup$
Hm thank you, but how does u have to be chosen? it does not work for me
$endgroup$
– Tesla
Dec 15 '18 at 21:37












$begingroup$
You have to choose $u = 0$.
$endgroup$
– gerw
Dec 16 '18 at 18:56




$begingroup$
You have to choose $u = 0$.
$endgroup$
– gerw
Dec 16 '18 at 18:56











0












$begingroup$

No, this is not possible.



Using the linearity of $A$ in these properties and an inequality involving $limsup$,
it can be shown that $A_1+A_2$ fulfills the same properties.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
    $endgroup$
    – Tesla
    Dec 12 '18 at 10:01










  • $begingroup$
    I think my answer should still be true
    $endgroup$
    – supinf
    Dec 12 '18 at 10:15










  • $begingroup$
    You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
    $endgroup$
    – daw
    Dec 12 '18 at 19:21
















0












$begingroup$

No, this is not possible.



Using the linearity of $A$ in these properties and an inequality involving $limsup$,
it can be shown that $A_1+A_2$ fulfills the same properties.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
    $endgroup$
    – Tesla
    Dec 12 '18 at 10:01










  • $begingroup$
    I think my answer should still be true
    $endgroup$
    – supinf
    Dec 12 '18 at 10:15










  • $begingroup$
    You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
    $endgroup$
    – daw
    Dec 12 '18 at 19:21














0












0








0





$begingroup$

No, this is not possible.



Using the linearity of $A$ in these properties and an inequality involving $limsup$,
it can be shown that $A_1+A_2$ fulfills the same properties.






share|cite|improve this answer









$endgroup$



No, this is not possible.



Using the linearity of $A$ in these properties and an inequality involving $limsup$,
it can be shown that $A_1+A_2$ fulfills the same properties.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 12 '18 at 9:39









supinfsupinf

6,6921028




6,6921028












  • $begingroup$
    thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
    $endgroup$
    – Tesla
    Dec 12 '18 at 10:01










  • $begingroup$
    I think my answer should still be true
    $endgroup$
    – supinf
    Dec 12 '18 at 10:15










  • $begingroup$
    You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
    $endgroup$
    – daw
    Dec 12 '18 at 19:21


















  • $begingroup$
    thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
    $endgroup$
    – Tesla
    Dec 12 '18 at 10:01










  • $begingroup$
    I think my answer should still be true
    $endgroup$
    – supinf
    Dec 12 '18 at 10:15










  • $begingroup$
    You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
    $endgroup$
    – daw
    Dec 12 '18 at 19:21
















$begingroup$
thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
$endgroup$
– Tesla
Dec 12 '18 at 10:01




$begingroup$
thanks. sorry, i mistyped my question. The operators need not to be bounded/coercive.
$endgroup$
– Tesla
Dec 12 '18 at 10:01












$begingroup$
I think my answer should still be true
$endgroup$
– supinf
Dec 12 '18 at 10:15




$begingroup$
I think my answer should still be true
$endgroup$
– supinf
Dec 12 '18 at 10:15












$begingroup$
You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
$endgroup$
– daw
Dec 12 '18 at 19:21




$begingroup$
You cannot conclude $A_1u_n$ and $A_2u_n$ to converge weakly if $(A_1+A_2)u_n$ converges weakly.
$endgroup$
– daw
Dec 12 '18 at 19:21


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036458%2fa-1-a-2-fulfill-property-but-their-sum-a-1a-2-does-not%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?