Proof for this binomial coefficient's equation
$begingroup$
For $k, l in mathbb N$
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i=binom{k+l+2}{k+1}-1$$
How can I prove this?
I thought some ideas with Pascal's triangle, counting paths on the grid and simple deformation of the formula.
It can be checked here (wolframalpha).
If the proof is difficult, please let me know the main idea.
Sorry for my poor English.
Thank you.
EDIT:
I got the great and short proof using Hockey-stick identity by Anubhab Ghosal, but because of this form, I could also get the Robert Z's specialized answer.
Then I don't think it is fully duplicate.
combinatorics summation binomial-coefficients
$endgroup$
add a comment |
$begingroup$
For $k, l in mathbb N$
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i=binom{k+l+2}{k+1}-1$$
How can I prove this?
I thought some ideas with Pascal's triangle, counting paths on the grid and simple deformation of the formula.
It can be checked here (wolframalpha).
If the proof is difficult, please let me know the main idea.
Sorry for my poor English.
Thank you.
EDIT:
I got the great and short proof using Hockey-stick identity by Anubhab Ghosal, but because of this form, I could also get the Robert Z's specialized answer.
Then I don't think it is fully duplicate.
combinatorics summation binomial-coefficients
$endgroup$
1
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48
add a comment |
$begingroup$
For $k, l in mathbb N$
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i=binom{k+l+2}{k+1}-1$$
How can I prove this?
I thought some ideas with Pascal's triangle, counting paths on the grid and simple deformation of the formula.
It can be checked here (wolframalpha).
If the proof is difficult, please let me know the main idea.
Sorry for my poor English.
Thank you.
EDIT:
I got the great and short proof using Hockey-stick identity by Anubhab Ghosal, but because of this form, I could also get the Robert Z's specialized answer.
Then I don't think it is fully duplicate.
combinatorics summation binomial-coefficients
$endgroup$
For $k, l in mathbb N$
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i=binom{k+l+2}{k+1}-1$$
How can I prove this?
I thought some ideas with Pascal's triangle, counting paths on the grid and simple deformation of the formula.
It can be checked here (wolframalpha).
If the proof is difficult, please let me know the main idea.
Sorry for my poor English.
Thank you.
EDIT:
I got the great and short proof using Hockey-stick identity by Anubhab Ghosal, but because of this form, I could also get the Robert Z's specialized answer.
Then I don't think it is fully duplicate.
combinatorics summation binomial-coefficients
combinatorics summation binomial-coefficients
edited Dec 12 '18 at 13:54
Martin Sleziak
44.9k10122277
44.9k10122277
asked Dec 12 '18 at 9:58
るましるまし
235
235
1
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48
add a comment |
1
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48
1
1
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Your idea about a combinatorial proof which is related to counting paths in a grid is a good one!
The binomial $binom{i+j}i$
counts the paths on the grid from $(0,0)$ to $(i,j)$ moving only right or up. So the double sum
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i-1$$
counts the number of all such paths from $(0,0)$ to any vertex inside the rectangle $(0,k)times (0,l)$ different from $(0,0)$.
Now consider the paths from $(0,0)$ to $(k+1,l+1)$ different from $$(0,0)to (0,l+1)to (k+1,l+1)quadtext{and}quad
(0,0)to (k+1,0)to (k+1,l+1)$$ which are
$$binom{k+l+2}{k+1}-2.$$
Now any path of the first kind can be completed to a path of the second kind by changing direction, going to the boundary of the rectangle
$(0,k+1)times(0,l+1)$ and then moving to the corner $(k+1,l+1)$ along the side.
Is this a bijection between the first set of paths and the second one?
$endgroup$
add a comment |
$begingroup$
$$displaystylesum_{i=0}^ksum_{j=0}^lbinom{i+j}i=sum_{i=0}^ksum_{j=i}^{i+l}binom{j}i=sum_{i=0}^kbinom{i+l+1}{i+1} ^{[1]}$$
$$=sum_{i=0}^kbinom{i+l+1}{l}=sum_{i=l}^{k+l+1}binom{i}{l}−1=binom{k+l+2}{k+1}-1 ^{[1]}$$
1. Hockey-Stick Identity
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i} = {k + ell + 2 choose k + 1} - 1: {LARGE ?}.qquad k, ell in mathbb{N}}$.
begin{align}
&bbox[10px,#ffd]{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i}} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{i + j choose j} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{-i - 1 choose j}
pars{-1}^{,j}
\[5mm] = &
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{, j}}pars{1 + z}^{-i - 1} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{0}}{1 over z^{, j}},pars{1 + z}^{-i - 1}
\[5mm] = &
bracks{z^{0}}sum_{i = 0}^{k}pars{1 over 1 + z}^{i + 1}
sum_{j = 0}^{ell}pars{-,{1 over z}}^{,j}
\[5mm] = &
bracks{z^{0}}braces{{1 over 1 + z},
{bracks{1/pars{1 + z}}^{k + 1} - 1 over 1/pars{1 + z} - 1}}
braces{{pars{-1/z}^{ell + 1} - 1 over -1/z - 1}}
\[5mm] = &
bracks{z^{0}}braces{%
{1 - pars{1 + z}^{k + 1} over -z}
,{1 over pars{1 + z}^{k + 1}}}
braces{{pars{-1}^{ell + 1} - z^{ell + 1} over -1 - z},{z over z^{ell + 1}}}
\[5mm] = &
bracks{z^{ell + 1}}braces{1 - {1 over pars{1 + z}^{k + 1}}}
braces{z^{ell + 1} + pars{-1}^{ell} over 1 + z}
\[5mm] = &
pars{-1}^{ell}bracks{z^{ell + 1}}
bracks{pars{1 + z}^{-1} - pars{1 + z}^{-k - 2}}
\[5mm] = &
pars{-1}^{ell}bracks{pars{-1}^{ell + 1} - {-k - 2 choose ell + 1}}
\[5mm] = &
-1 - pars{-1}^{ell},{-bracks{-k - 2} + bracks{ell + 1} - 1 choose ell + 1}pars{-1}^{ell + 1}
\[5mm] = &
-1 + { k + ell + 2 choose ell + 1} =
bbx{{k + ell + 2 choose k + 1} - 1}
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036489%2fproof-for-this-binomial-coefficients-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your idea about a combinatorial proof which is related to counting paths in a grid is a good one!
The binomial $binom{i+j}i$
counts the paths on the grid from $(0,0)$ to $(i,j)$ moving only right or up. So the double sum
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i-1$$
counts the number of all such paths from $(0,0)$ to any vertex inside the rectangle $(0,k)times (0,l)$ different from $(0,0)$.
Now consider the paths from $(0,0)$ to $(k+1,l+1)$ different from $$(0,0)to (0,l+1)to (k+1,l+1)quadtext{and}quad
(0,0)to (k+1,0)to (k+1,l+1)$$ which are
$$binom{k+l+2}{k+1}-2.$$
Now any path of the first kind can be completed to a path of the second kind by changing direction, going to the boundary of the rectangle
$(0,k+1)times(0,l+1)$ and then moving to the corner $(k+1,l+1)$ along the side.
Is this a bijection between the first set of paths and the second one?
$endgroup$
add a comment |
$begingroup$
Your idea about a combinatorial proof which is related to counting paths in a grid is a good one!
The binomial $binom{i+j}i$
counts the paths on the grid from $(0,0)$ to $(i,j)$ moving only right or up. So the double sum
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i-1$$
counts the number of all such paths from $(0,0)$ to any vertex inside the rectangle $(0,k)times (0,l)$ different from $(0,0)$.
Now consider the paths from $(0,0)$ to $(k+1,l+1)$ different from $$(0,0)to (0,l+1)to (k+1,l+1)quadtext{and}quad
(0,0)to (k+1,0)to (k+1,l+1)$$ which are
$$binom{k+l+2}{k+1}-2.$$
Now any path of the first kind can be completed to a path of the second kind by changing direction, going to the boundary of the rectangle
$(0,k+1)times(0,l+1)$ and then moving to the corner $(k+1,l+1)$ along the side.
Is this a bijection between the first set of paths and the second one?
$endgroup$
add a comment |
$begingroup$
Your idea about a combinatorial proof which is related to counting paths in a grid is a good one!
The binomial $binom{i+j}i$
counts the paths on the grid from $(0,0)$ to $(i,j)$ moving only right or up. So the double sum
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i-1$$
counts the number of all such paths from $(0,0)$ to any vertex inside the rectangle $(0,k)times (0,l)$ different from $(0,0)$.
Now consider the paths from $(0,0)$ to $(k+1,l+1)$ different from $$(0,0)to (0,l+1)to (k+1,l+1)quadtext{and}quad
(0,0)to (k+1,0)to (k+1,l+1)$$ which are
$$binom{k+l+2}{k+1}-2.$$
Now any path of the first kind can be completed to a path of the second kind by changing direction, going to the boundary of the rectangle
$(0,k+1)times(0,l+1)$ and then moving to the corner $(k+1,l+1)$ along the side.
Is this a bijection between the first set of paths and the second one?
$endgroup$
Your idea about a combinatorial proof which is related to counting paths in a grid is a good one!
The binomial $binom{i+j}i$
counts the paths on the grid from $(0,0)$ to $(i,j)$ moving only right or up. So the double sum
$$sum_{i=0}^ksum_{j=0}^lbinom{i+j}i-1$$
counts the number of all such paths from $(0,0)$ to any vertex inside the rectangle $(0,k)times (0,l)$ different from $(0,0)$.
Now consider the paths from $(0,0)$ to $(k+1,l+1)$ different from $$(0,0)to (0,l+1)to (k+1,l+1)quadtext{and}quad
(0,0)to (k+1,0)to (k+1,l+1)$$ which are
$$binom{k+l+2}{k+1}-2.$$
Now any path of the first kind can be completed to a path of the second kind by changing direction, going to the boundary of the rectangle
$(0,k+1)times(0,l+1)$ and then moving to the corner $(k+1,l+1)$ along the side.
Is this a bijection between the first set of paths and the second one?
edited Dec 12 '18 at 10:42
answered Dec 12 '18 at 10:31
Robert ZRobert Z
101k1071144
101k1071144
add a comment |
add a comment |
$begingroup$
$$displaystylesum_{i=0}^ksum_{j=0}^lbinom{i+j}i=sum_{i=0}^ksum_{j=i}^{i+l}binom{j}i=sum_{i=0}^kbinom{i+l+1}{i+1} ^{[1]}$$
$$=sum_{i=0}^kbinom{i+l+1}{l}=sum_{i=l}^{k+l+1}binom{i}{l}−1=binom{k+l+2}{k+1}-1 ^{[1]}$$
1. Hockey-Stick Identity
$endgroup$
add a comment |
$begingroup$
$$displaystylesum_{i=0}^ksum_{j=0}^lbinom{i+j}i=sum_{i=0}^ksum_{j=i}^{i+l}binom{j}i=sum_{i=0}^kbinom{i+l+1}{i+1} ^{[1]}$$
$$=sum_{i=0}^kbinom{i+l+1}{l}=sum_{i=l}^{k+l+1}binom{i}{l}−1=binom{k+l+2}{k+1}-1 ^{[1]}$$
1. Hockey-Stick Identity
$endgroup$
add a comment |
$begingroup$
$$displaystylesum_{i=0}^ksum_{j=0}^lbinom{i+j}i=sum_{i=0}^ksum_{j=i}^{i+l}binom{j}i=sum_{i=0}^kbinom{i+l+1}{i+1} ^{[1]}$$
$$=sum_{i=0}^kbinom{i+l+1}{l}=sum_{i=l}^{k+l+1}binom{i}{l}−1=binom{k+l+2}{k+1}-1 ^{[1]}$$
1. Hockey-Stick Identity
$endgroup$
$$displaystylesum_{i=0}^ksum_{j=0}^lbinom{i+j}i=sum_{i=0}^ksum_{j=i}^{i+l}binom{j}i=sum_{i=0}^kbinom{i+l+1}{i+1} ^{[1]}$$
$$=sum_{i=0}^kbinom{i+l+1}{l}=sum_{i=l}^{k+l+1}binom{i}{l}−1=binom{k+l+2}{k+1}-1 ^{[1]}$$
1. Hockey-Stick Identity
edited Dec 12 '18 at 10:17
answered Dec 12 '18 at 10:12
Anubhab GhosalAnubhab Ghosal
1,23619
1,23619
add a comment |
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i} = {k + ell + 2 choose k + 1} - 1: {LARGE ?}.qquad k, ell in mathbb{N}}$.
begin{align}
&bbox[10px,#ffd]{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i}} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{i + j choose j} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{-i - 1 choose j}
pars{-1}^{,j}
\[5mm] = &
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{, j}}pars{1 + z}^{-i - 1} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{0}}{1 over z^{, j}},pars{1 + z}^{-i - 1}
\[5mm] = &
bracks{z^{0}}sum_{i = 0}^{k}pars{1 over 1 + z}^{i + 1}
sum_{j = 0}^{ell}pars{-,{1 over z}}^{,j}
\[5mm] = &
bracks{z^{0}}braces{{1 over 1 + z},
{bracks{1/pars{1 + z}}^{k + 1} - 1 over 1/pars{1 + z} - 1}}
braces{{pars{-1/z}^{ell + 1} - 1 over -1/z - 1}}
\[5mm] = &
bracks{z^{0}}braces{%
{1 - pars{1 + z}^{k + 1} over -z}
,{1 over pars{1 + z}^{k + 1}}}
braces{{pars{-1}^{ell + 1} - z^{ell + 1} over -1 - z},{z over z^{ell + 1}}}
\[5mm] = &
bracks{z^{ell + 1}}braces{1 - {1 over pars{1 + z}^{k + 1}}}
braces{z^{ell + 1} + pars{-1}^{ell} over 1 + z}
\[5mm] = &
pars{-1}^{ell}bracks{z^{ell + 1}}
bracks{pars{1 + z}^{-1} - pars{1 + z}^{-k - 2}}
\[5mm] = &
pars{-1}^{ell}bracks{pars{-1}^{ell + 1} - {-k - 2 choose ell + 1}}
\[5mm] = &
-1 - pars{-1}^{ell},{-bracks{-k - 2} + bracks{ell + 1} - 1 choose ell + 1}pars{-1}^{ell + 1}
\[5mm] = &
-1 + { k + ell + 2 choose ell + 1} =
bbx{{k + ell + 2 choose k + 1} - 1}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i} = {k + ell + 2 choose k + 1} - 1: {LARGE ?}.qquad k, ell in mathbb{N}}$.
begin{align}
&bbox[10px,#ffd]{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i}} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{i + j choose j} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{-i - 1 choose j}
pars{-1}^{,j}
\[5mm] = &
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{, j}}pars{1 + z}^{-i - 1} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{0}}{1 over z^{, j}},pars{1 + z}^{-i - 1}
\[5mm] = &
bracks{z^{0}}sum_{i = 0}^{k}pars{1 over 1 + z}^{i + 1}
sum_{j = 0}^{ell}pars{-,{1 over z}}^{,j}
\[5mm] = &
bracks{z^{0}}braces{{1 over 1 + z},
{bracks{1/pars{1 + z}}^{k + 1} - 1 over 1/pars{1 + z} - 1}}
braces{{pars{-1/z}^{ell + 1} - 1 over -1/z - 1}}
\[5mm] = &
bracks{z^{0}}braces{%
{1 - pars{1 + z}^{k + 1} over -z}
,{1 over pars{1 + z}^{k + 1}}}
braces{{pars{-1}^{ell + 1} - z^{ell + 1} over -1 - z},{z over z^{ell + 1}}}
\[5mm] = &
bracks{z^{ell + 1}}braces{1 - {1 over pars{1 + z}^{k + 1}}}
braces{z^{ell + 1} + pars{-1}^{ell} over 1 + z}
\[5mm] = &
pars{-1}^{ell}bracks{z^{ell + 1}}
bracks{pars{1 + z}^{-1} - pars{1 + z}^{-k - 2}}
\[5mm] = &
pars{-1}^{ell}bracks{pars{-1}^{ell + 1} - {-k - 2 choose ell + 1}}
\[5mm] = &
-1 - pars{-1}^{ell},{-bracks{-k - 2} + bracks{ell + 1} - 1 choose ell + 1}pars{-1}^{ell + 1}
\[5mm] = &
-1 + { k + ell + 2 choose ell + 1} =
bbx{{k + ell + 2 choose k + 1} - 1}
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i} = {k + ell + 2 choose k + 1} - 1: {LARGE ?}.qquad k, ell in mathbb{N}}$.
begin{align}
&bbox[10px,#ffd]{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i}} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{i + j choose j} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{-i - 1 choose j}
pars{-1}^{,j}
\[5mm] = &
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{, j}}pars{1 + z}^{-i - 1} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{0}}{1 over z^{, j}},pars{1 + z}^{-i - 1}
\[5mm] = &
bracks{z^{0}}sum_{i = 0}^{k}pars{1 over 1 + z}^{i + 1}
sum_{j = 0}^{ell}pars{-,{1 over z}}^{,j}
\[5mm] = &
bracks{z^{0}}braces{{1 over 1 + z},
{bracks{1/pars{1 + z}}^{k + 1} - 1 over 1/pars{1 + z} - 1}}
braces{{pars{-1/z}^{ell + 1} - 1 over -1/z - 1}}
\[5mm] = &
bracks{z^{0}}braces{%
{1 - pars{1 + z}^{k + 1} over -z}
,{1 over pars{1 + z}^{k + 1}}}
braces{{pars{-1}^{ell + 1} - z^{ell + 1} over -1 - z},{z over z^{ell + 1}}}
\[5mm] = &
bracks{z^{ell + 1}}braces{1 - {1 over pars{1 + z}^{k + 1}}}
braces{z^{ell + 1} + pars{-1}^{ell} over 1 + z}
\[5mm] = &
pars{-1}^{ell}bracks{z^{ell + 1}}
bracks{pars{1 + z}^{-1} - pars{1 + z}^{-k - 2}}
\[5mm] = &
pars{-1}^{ell}bracks{pars{-1}^{ell + 1} - {-k - 2 choose ell + 1}}
\[5mm] = &
-1 - pars{-1}^{ell},{-bracks{-k - 2} + bracks{ell + 1} - 1 choose ell + 1}pars{-1}^{ell + 1}
\[5mm] = &
-1 + { k + ell + 2 choose ell + 1} =
bbx{{k + ell + 2 choose k + 1} - 1}
end{align}
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
$ds{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i} = {k + ell + 2 choose k + 1} - 1: {LARGE ?}.qquad k, ell in mathbb{N}}$.
begin{align}
&bbox[10px,#ffd]{sum_{i = 0}^{k}sum_{j = 0}^{ell}
{i + j choose i}} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{i + j choose j} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}{-i - 1 choose j}
pars{-1}^{,j}
\[5mm] = &
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{, j}}pars{1 + z}^{-i - 1} =
sum_{i = 0}^{k}sum_{j = 0}^{ell}pars{-1}^{,j}
bracks{z^{0}}{1 over z^{, j}},pars{1 + z}^{-i - 1}
\[5mm] = &
bracks{z^{0}}sum_{i = 0}^{k}pars{1 over 1 + z}^{i + 1}
sum_{j = 0}^{ell}pars{-,{1 over z}}^{,j}
\[5mm] = &
bracks{z^{0}}braces{{1 over 1 + z},
{bracks{1/pars{1 + z}}^{k + 1} - 1 over 1/pars{1 + z} - 1}}
braces{{pars{-1/z}^{ell + 1} - 1 over -1/z - 1}}
\[5mm] = &
bracks{z^{0}}braces{%
{1 - pars{1 + z}^{k + 1} over -z}
,{1 over pars{1 + z}^{k + 1}}}
braces{{pars{-1}^{ell + 1} - z^{ell + 1} over -1 - z},{z over z^{ell + 1}}}
\[5mm] = &
bracks{z^{ell + 1}}braces{1 - {1 over pars{1 + z}^{k + 1}}}
braces{z^{ell + 1} + pars{-1}^{ell} over 1 + z}
\[5mm] = &
pars{-1}^{ell}bracks{z^{ell + 1}}
bracks{pars{1 + z}^{-1} - pars{1 + z}^{-k - 2}}
\[5mm] = &
pars{-1}^{ell}bracks{pars{-1}^{ell + 1} - {-k - 2 choose ell + 1}}
\[5mm] = &
-1 - pars{-1}^{ell},{-bracks{-k - 2} + bracks{ell + 1} - 1 choose ell + 1}pars{-1}^{ell + 1}
\[5mm] = &
-1 + { k + ell + 2 choose ell + 1} =
bbx{{k + ell + 2 choose k + 1} - 1}
end{align}
answered Dec 20 '18 at 22:11
Felix MarinFelix Marin
68.8k7110146
68.8k7110146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036489%2fproof-for-this-binomial-coefficients-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Possible duplicate of Prove $sumlimits_{i=0}^nbinom{i+k-1}{k-1}=binom{n+k}{k}$ (a.k.a. Hockey-Stick Identity)
$endgroup$
– user10354138
Dec 12 '18 at 10:07
$begingroup$
@user10354138 The double sum is related Hockey-Stick Identity but it is not a duplicate of the linked question. Moreover OP asks for a combinatorial proof (counting paths...)
$endgroup$
– Robert Z
Dec 12 '18 at 11:30
$begingroup$
@RobertZ The OP didn't ask for a combinatorial proof, only for a proof ("How can I prove this?" in the quote, not "How can I prove this combinatorially?"). It can be proved by applying the linked result twice, so it is a duplicate.
$endgroup$
– user10354138
Dec 12 '18 at 13:18
$begingroup$
@user10354138 Fine. So we have a different opinion on this matter. Have a nice day.
$endgroup$
– Robert Z
Dec 12 '18 at 15:48