Evaluating $int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$
$begingroup$
How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?
With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.
Thoughts of this integral
Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.
Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.
But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.
calculus integration definite-integrals logarithms
$endgroup$
add a comment |
$begingroup$
How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?
With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.
Thoughts of this integral
Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.
Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.
But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.
calculus integration definite-integrals logarithms
$endgroup$
1
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23
add a comment |
$begingroup$
How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?
With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.
Thoughts of this integral
Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.
Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.
But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.
calculus integration definite-integrals logarithms
$endgroup$
How can we find the value of $$int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx$$ using elementary methods?
With some help of calculator I get the result: $displaystyle{frac3{128}pi^3-frac9{32}piln^22}$.
Thoughts of this integral
Since I have asked this question and Pisco gave a brilliant answer, I tried to convert $$I_1=int_0^1arctan xln(1+x)frac{dx}xtext{ and }I_2=int_0^1arctan xln(1+x)frac{dx}{1+x}$$ into the form of integral Pisco gave.
Integrating by parts to the second integral converts $I_2$ into $int_0^1frac{ln^2(1+x)}{1+x^2}dx$.
But for $I_1$? Integrating by parts gives a dilog function and I tried substitution $x=frac{1-t}{1+t}$ and got $$frac{lnfrac{2}{t+1} arctanfrac{1-t}{1+t}}{1-t^2}$$ which is not what I want.
calculus integration definite-integrals logarithms
calculus integration definite-integrals logarithms
edited Dec 28 '18 at 18:35
Zacky
7,87511062
7,87511062
asked Dec 28 '18 at 10:01
Kemono ChenKemono Chen
3,2461844
3,2461844
1
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23
add a comment |
1
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23
1
1
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here is an elementary approach, although it turned into a crossover with FDP's answer.
First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$
Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!
$endgroup$
add a comment |
$begingroup$
NOT A FULL SOLUTION BUT A START:
Here you have:
begin{equation}
I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Consider using Feynman's Trick with two parameters:
begin{equation}
I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:
begin{equation}
frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
end{equation}
From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).
$endgroup$
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
add a comment |
$begingroup$
For $I_1$, by integration by parts,
begin{eqnarray*}
I_1&=&int_0^1arctan xln(1+x)dln x\
&=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
&=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
&=&-I_3-I_4.
end{eqnarray*}
Here $I_3$ and $I_4$ are
$$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
From here,
$$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
From here,
$$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
$G$ is the Catalan's constant.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054741%2fevaluating-int-01-arctan-x-ln1x-left-frac2x-frac31x-rightdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is an elementary approach, although it turned into a crossover with FDP's answer.
First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$
Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!
$endgroup$
add a comment |
$begingroup$
Here is an elementary approach, although it turned into a crossover with FDP's answer.
First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$
Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!
$endgroup$
add a comment |
$begingroup$
Here is an elementary approach, although it turned into a crossover with FDP's answer.
First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$
Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!
$endgroup$
Here is an elementary approach, although it turned into a crossover with FDP's answer.
First note that from here we have:
$$color{blue}{int_0^1 frac{arctan x ln(1+x)}{x}dx}=frac{3}{2}int_0^1 frac{arctan xln(1+x^2)}{x}dx$$
$$overset{IBP}=frac32 underbrace{ln xarctan xln(1+x^2)bigg|_0^1}_{=0}-frac32 left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright) $$
Back to the original integral, we have:
$$I=color{blue}{2int_0^1 frac{arctan x ln(1+x)}{x}dx}-color{red}{3int_0^1 frac{arctan x ln(1+x)}{1+x}dx} $$
$$=color{blue}{-3left(int_0^1 frac{ln xln(1+x^2)}{1+x^2}dx+2int_0^1 frac{xarctan xln x}{1+x^2}dxright)}-color{red}{3int_0^1frac{arctan xln(1+x)}{1+x}dx}$$
$$Rightarrow I=-3(B+2A+J)quad quad (1)$$
Where I kept the notation like in FDP's answer. Namely:
$$begin{align*}
displaystyle A&=int_0^1 dfrac{xarctan xln x}{1+x^2}dx\
displaystyle B&=int_0^1 dfrac{ln x ln(1+x^2)}{1+x^2}dx\
displaystyle J&=int_0^1dfrac{arctan xln(1+x)}{1+x}dx
end{align*}$$
Also another two identities follows from that post, see $(8)$ and $(9)$: $$J=dfrac{5}{3}Gln 2-dfrac{pi^3}{128}+dfrac{3pileft(ln 2right)^2}{32}+B+dfrac{2}{3}left(dfrac{Gln 2}{2}-dfrac{pi^3}{64}right)-dfrac{2}{3}cdotfrac{pi^3}{32} $$
$$Rightarrow color{purple}{J=2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B} tag 2$$
$$color{magenta}{A=dfrac{1}{64}pi^3-B-Gln 2} tag 3$$
Now plugging $(2)$ and $(3)$ in $(1)$ yields:
$$I=-3left(B+2left(color{magenta}{dfrac{1}{64}pi^3-B-Gln 2}right)+ color{purple}{2Gln 2 -frac{5pi^3}{128}+frac{3pi}{32}ln^2 2 +B}right)$$
$$Rightarrow I=-3left(-frac{pi^3}{128}+frac{3pi}{32}ln^2 2right)=boxed{frac{3pi^3}{128}-frac{9pi}{32}ln^2 2}$$
Credits to FDP for his amazing answer there!
edited Dec 28 '18 at 18:45
answered Dec 28 '18 at 18:11
ZackyZacky
7,87511062
7,87511062
add a comment |
add a comment |
$begingroup$
NOT A FULL SOLUTION BUT A START:
Here you have:
begin{equation}
I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Consider using Feynman's Trick with two parameters:
begin{equation}
I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:
begin{equation}
frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
end{equation}
From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).
$endgroup$
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
add a comment |
$begingroup$
NOT A FULL SOLUTION BUT A START:
Here you have:
begin{equation}
I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Consider using Feynman's Trick with two parameters:
begin{equation}
I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:
begin{equation}
frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
end{equation}
From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).
$endgroup$
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
add a comment |
$begingroup$
NOT A FULL SOLUTION BUT A START:
Here you have:
begin{equation}
I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Consider using Feynman's Trick with two parameters:
begin{equation}
I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:
begin{equation}
frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
end{equation}
From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).
$endgroup$
NOT A FULL SOLUTION BUT A START:
Here you have:
begin{equation}
I = int_0^1arctan xln(1+x)left(frac2x-frac3{1+x}right)dx = int_0^1arctan xln(1+x)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Consider using Feynman's Trick with two parameters:
begin{equation}
I(a,b) = int_0^1arctan(ax)ln(1+bx)left[frac{2 - x}{x(x + 1)}right]dx
end{equation}
Here $I = I(1,1)$ and $I(0,b), I(a,0) = 0$. Here take the partial derivative with respect to $a$ and $b$ to yield:
begin{equation}
frac{partial^2I}{partial a partial b} = int_0^1frac{x}{a^2x^2 + 1}cdotfrac{x}{1 +bx}left[frac{2 - x}{x(x + 1)}right]dx = int_0^1 frac{xleft(2 - xright)}{left(a^2x^2 + 1right)left(1 + bxright)left(x + 1right)}dx
end{equation}
From here employ Partial Fraction Decomposition. I will finish off in an hour if you're still interested (sorry will be afk for the next hour).
edited Dec 28 '18 at 11:33
answered Dec 28 '18 at 10:35
user150203
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
add a comment |
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
$begingroup$
Yes, you are correct! thanks for that. I will edit now.
$endgroup$
– user150203
Dec 28 '18 at 11:31
1
1
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
$begingroup$
I have a feeling that it might be better to represent $arctan(x)$ and/or $ln(x)$ as an integral and covert the original single integral to a double/triple. Will have to investigate tomorrow as I'm falling asleep as I type this. Great Question btw.
$endgroup$
– user150203
Dec 28 '18 at 11:39
add a comment |
$begingroup$
For $I_1$, by integration by parts,
begin{eqnarray*}
I_1&=&int_0^1arctan xln(1+x)dln x\
&=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
&=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
&=&-I_3-I_4.
end{eqnarray*}
Here $I_3$ and $I_4$ are
$$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
From here,
$$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
From here,
$$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
$G$ is the Catalan's constant.
$endgroup$
add a comment |
$begingroup$
For $I_1$, by integration by parts,
begin{eqnarray*}
I_1&=&int_0^1arctan xln(1+x)dln x\
&=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
&=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
&=&-I_3-I_4.
end{eqnarray*}
Here $I_3$ and $I_4$ are
$$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
From here,
$$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
From here,
$$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
$G$ is the Catalan's constant.
$endgroup$
add a comment |
$begingroup$
For $I_1$, by integration by parts,
begin{eqnarray*}
I_1&=&int_0^1arctan xln(1+x)dln x\
&=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
&=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
&=&-I_3-I_4.
end{eqnarray*}
Here $I_3$ and $I_4$ are
$$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
From here,
$$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
From here,
$$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
$G$ is the Catalan's constant.
$endgroup$
For $I_1$, by integration by parts,
begin{eqnarray*}
I_1&=&int_0^1arctan xln(1+x)dln x\
&=&arctan xln(1+x)ln x|_0^1-int_0^1ln xleft(frac{ln(1+x)}{1+x^2}+frac{arctan x}{1+x}right)dx\
&=&-int_0^1frac{ln xln(1+x)}{1+x^2}dx-int_0^1frac{ln xarctan x}{1+x}dx\
&=&-I_3-I_4.
end{eqnarray*}
Here $I_3$ and $I_4$ are
$$ I_3=int_0^1frac{ln xln(1+x)}{1+x^2}dx, I_4=int_0^1frac{ln xarctan x}{1+x}dx. $$
From here,
$$ I_3= -2 G ln (2)-3 Imleft(text{Li}_3left(frac{1+i}{2}right)right)+frac{11 pi ^3}{128}+frac{3}{32} pi ln ^2(2). $$
From here,
$$ I_4=dfrac{Gln 2}{2}-dfrac{pi^3}{64} $$
$G$ is the Catalan's constant.
answered Dec 28 '18 at 15:59
xpaulxpaul
23.5k24655
23.5k24655
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054741%2fevaluating-int-01-arctan-x-ln1x-left-frac2x-frac31x-rightdx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Just curious, but why do you expect there to be an elementary method?
$endgroup$
– Zacky
Dec 28 '18 at 10:15
$begingroup$
@Zacky I expect there to be an elementary method since I think the answer of the linked question is quite elementary.
$endgroup$
– Kemono Chen
Dec 28 '18 at 10:23