Angle of ellipse's long axis and abscisa












0












$begingroup$


I am reading a paper where I encountered the following equations



$x=a.cos(omega t)$ and $y=b.cos(omega t + phi)$
$phi$ and $omega$ are constants, t is the variable parameter.



Then the paper suggests this is the parametric equation of an ellipse.



First of all, how can I prove this?

Then the area of the ellipse is calculated and is found as $A= pi a b sin phi$, which I found by using Green's theorem. Is there a more elegant way to find this?



Then, last but not least, the angle $gamma$ between the long axis and the abscisa needs to be determined and according to the paper it's given by
$tan 2gamma = frac{2ab cos phi}{a^2 - b^2}$.



Can somebody prove this please?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I am reading a paper where I encountered the following equations



    $x=a.cos(omega t)$ and $y=b.cos(omega t + phi)$
    $phi$ and $omega$ are constants, t is the variable parameter.



    Then the paper suggests this is the parametric equation of an ellipse.



    First of all, how can I prove this?

    Then the area of the ellipse is calculated and is found as $A= pi a b sin phi$, which I found by using Green's theorem. Is there a more elegant way to find this?



    Then, last but not least, the angle $gamma$ between the long axis and the abscisa needs to be determined and according to the paper it's given by
    $tan 2gamma = frac{2ab cos phi}{a^2 - b^2}$.



    Can somebody prove this please?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I am reading a paper where I encountered the following equations



      $x=a.cos(omega t)$ and $y=b.cos(omega t + phi)$
      $phi$ and $omega$ are constants, t is the variable parameter.



      Then the paper suggests this is the parametric equation of an ellipse.



      First of all, how can I prove this?

      Then the area of the ellipse is calculated and is found as $A= pi a b sin phi$, which I found by using Green's theorem. Is there a more elegant way to find this?



      Then, last but not least, the angle $gamma$ between the long axis and the abscisa needs to be determined and according to the paper it's given by
      $tan 2gamma = frac{2ab cos phi}{a^2 - b^2}$.



      Can somebody prove this please?










      share|cite|improve this question











      $endgroup$




      I am reading a paper where I encountered the following equations



      $x=a.cos(omega t)$ and $y=b.cos(omega t + phi)$
      $phi$ and $omega$ are constants, t is the variable parameter.



      Then the paper suggests this is the parametric equation of an ellipse.



      First of all, how can I prove this?

      Then the area of the ellipse is calculated and is found as $A= pi a b sin phi$, which I found by using Green's theorem. Is there a more elegant way to find this?



      Then, last but not least, the angle $gamma$ between the long axis and the abscisa needs to be determined and according to the paper it's given by
      $tan 2gamma = frac{2ab cos phi}{a^2 - b^2}$.



      Can somebody prove this please?







      parametric






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 28 '18 at 9:58







      AWally

















      asked Dec 28 '18 at 8:56









      AWallyAWally

      11




      11






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          I think that your proof of the area is calculated most elegantly with Green's Theorem since you have a parametric form.



          For the angle, I think the fastest way depends on how much you know already about the ellipse, for example do you know that the center is the origin. To avoid making assumptions without verifying them, I would look for the rotation transforms the standard parametric form $(p cos u,q sin u)$ into your parametric form:
          $$
          begin{pmatrix}
          x\
          y
          end{pmatrix}
          =
          begin{pmatrix}
          cosgamma & -singamma\
          singamma & cosgamma
          end{pmatrix}
          begin{pmatrix}
          p cos u\
          q sin u
          end{pmatrix}
          =
          begin{pmatrix}
          p cos ucosgamma-q sin gamma sin(u)\
          p cos usingamma+q cos gamma sin(u)
          end{pmatrix}
          $$

          $$
          =
          begin{pmatrix}
          p cos gamma left(cos u-frac{q sin gamma}{p cos gamma} sin u right)\
          p sin gamma left(cos u+frac{q cos gamma}{p sin gamma} sin u right)
          end{pmatrix}
          $$



          Now say
          $$
          tantheta_1=frac{q}{p} tan gamma,
          $$

          $$
          tantheta_2=-frac{q}{p} cot gamma.
          $$

          Then you can verify that
          $$
          begin{pmatrix}
          x\
          y
          end{pmatrix}
          =
          begin{pmatrix}
          p frac{cos gamma} {cos theta_1} cos(u+theta_1)\
          p frac{sin gamma} {cos theta_2} cos(u+theta_2)
          end{pmatrix}
          $$

          Now subsitute $u=omega t -theta_1$:
          $$
          begin{pmatrix}
          p frac{cos gamma}{ cos theta_1} cos(omega t)\
          p frac{sin gamma}{ cos theta_2} cos(omega t-theta_1+theta_2)
          end{pmatrix}
          $$

          We identify that $phi=theta_2-theta_1$, $a=p frac{cos gamma}{ cos theta_1}$,$b=p frac{sin gamma}{ cos theta_2}$. Taking cos of both sides of the first:
          $$
          cosphi=cos(theta_2- theta_1)=cos theta_2 cos theta_1+sin theta_2 sin theta_1=cos theta_2 cos theta_1 (1+ tan theta_1 tan theta_2 )
          $$

          $$
          = frac{p cos gamma}{a} frac{ p sin gamma}{b} left(1 -frac{q^2}{p^2} right) =frac1{2ab} sin(2gamma) (p^2-q^2)
          $$

          We already see the numerator $2 a b cos phi$. Now we will "foefel" ourselves to the solution by calculating $a^2-b^2$:
          $$
          begin{align}
          a^2-b^2&=p^2 frac{cos^2 gamma}{cos^2 theta_1}-p^2 frac{sin^2 gamma}{cos^2 theta_2} = p^2 left[ cos^2 gammaleft(1+tan^2(theta_1)right)- sin^2 gammaleft(1+tan^2(theta_2)right) right]\
          &=p^2 left[ cos^2 gammaleft(1+frac{q^2}{p^2} tan^2 gammaright)- sin^2 gammaleft(1+frac{q^2}{p^2} cot^2 gammaright) right]\&=p^2 cos^2 gamma+q^2 sin^2 gamma-p^2 sin^2 gamma-q^2 cos^2 gamma=(p^2 -q^2) cos (2gamma)
          end{align}
          $$

          Putting everything together:
          $$
          cos phi=frac1{2ab} sin(2gamma) frac{(a^2-b^2)}{cos (2gamma)}=frac{a^2-b^2}{2ab} tan(2gamma) .
          $$

          Rearranging gives your formula.






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054693%2fangle-of-ellipses-long-axis-and-abscisa%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            I think that your proof of the area is calculated most elegantly with Green's Theorem since you have a parametric form.



            For the angle, I think the fastest way depends on how much you know already about the ellipse, for example do you know that the center is the origin. To avoid making assumptions without verifying them, I would look for the rotation transforms the standard parametric form $(p cos u,q sin u)$ into your parametric form:
            $$
            begin{pmatrix}
            x\
            y
            end{pmatrix}
            =
            begin{pmatrix}
            cosgamma & -singamma\
            singamma & cosgamma
            end{pmatrix}
            begin{pmatrix}
            p cos u\
            q sin u
            end{pmatrix}
            =
            begin{pmatrix}
            p cos ucosgamma-q sin gamma sin(u)\
            p cos usingamma+q cos gamma sin(u)
            end{pmatrix}
            $$

            $$
            =
            begin{pmatrix}
            p cos gamma left(cos u-frac{q sin gamma}{p cos gamma} sin u right)\
            p sin gamma left(cos u+frac{q cos gamma}{p sin gamma} sin u right)
            end{pmatrix}
            $$



            Now say
            $$
            tantheta_1=frac{q}{p} tan gamma,
            $$

            $$
            tantheta_2=-frac{q}{p} cot gamma.
            $$

            Then you can verify that
            $$
            begin{pmatrix}
            x\
            y
            end{pmatrix}
            =
            begin{pmatrix}
            p frac{cos gamma} {cos theta_1} cos(u+theta_1)\
            p frac{sin gamma} {cos theta_2} cos(u+theta_2)
            end{pmatrix}
            $$

            Now subsitute $u=omega t -theta_1$:
            $$
            begin{pmatrix}
            p frac{cos gamma}{ cos theta_1} cos(omega t)\
            p frac{sin gamma}{ cos theta_2} cos(omega t-theta_1+theta_2)
            end{pmatrix}
            $$

            We identify that $phi=theta_2-theta_1$, $a=p frac{cos gamma}{ cos theta_1}$,$b=p frac{sin gamma}{ cos theta_2}$. Taking cos of both sides of the first:
            $$
            cosphi=cos(theta_2- theta_1)=cos theta_2 cos theta_1+sin theta_2 sin theta_1=cos theta_2 cos theta_1 (1+ tan theta_1 tan theta_2 )
            $$

            $$
            = frac{p cos gamma}{a} frac{ p sin gamma}{b} left(1 -frac{q^2}{p^2} right) =frac1{2ab} sin(2gamma) (p^2-q^2)
            $$

            We already see the numerator $2 a b cos phi$. Now we will "foefel" ourselves to the solution by calculating $a^2-b^2$:
            $$
            begin{align}
            a^2-b^2&=p^2 frac{cos^2 gamma}{cos^2 theta_1}-p^2 frac{sin^2 gamma}{cos^2 theta_2} = p^2 left[ cos^2 gammaleft(1+tan^2(theta_1)right)- sin^2 gammaleft(1+tan^2(theta_2)right) right]\
            &=p^2 left[ cos^2 gammaleft(1+frac{q^2}{p^2} tan^2 gammaright)- sin^2 gammaleft(1+frac{q^2}{p^2} cot^2 gammaright) right]\&=p^2 cos^2 gamma+q^2 sin^2 gamma-p^2 sin^2 gamma-q^2 cos^2 gamma=(p^2 -q^2) cos (2gamma)
            end{align}
            $$

            Putting everything together:
            $$
            cos phi=frac1{2ab} sin(2gamma) frac{(a^2-b^2)}{cos (2gamma)}=frac{a^2-b^2}{2ab} tan(2gamma) .
            $$

            Rearranging gives your formula.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              I think that your proof of the area is calculated most elegantly with Green's Theorem since you have a parametric form.



              For the angle, I think the fastest way depends on how much you know already about the ellipse, for example do you know that the center is the origin. To avoid making assumptions without verifying them, I would look for the rotation transforms the standard parametric form $(p cos u,q sin u)$ into your parametric form:
              $$
              begin{pmatrix}
              x\
              y
              end{pmatrix}
              =
              begin{pmatrix}
              cosgamma & -singamma\
              singamma & cosgamma
              end{pmatrix}
              begin{pmatrix}
              p cos u\
              q sin u
              end{pmatrix}
              =
              begin{pmatrix}
              p cos ucosgamma-q sin gamma sin(u)\
              p cos usingamma+q cos gamma sin(u)
              end{pmatrix}
              $$

              $$
              =
              begin{pmatrix}
              p cos gamma left(cos u-frac{q sin gamma}{p cos gamma} sin u right)\
              p sin gamma left(cos u+frac{q cos gamma}{p sin gamma} sin u right)
              end{pmatrix}
              $$



              Now say
              $$
              tantheta_1=frac{q}{p} tan gamma,
              $$

              $$
              tantheta_2=-frac{q}{p} cot gamma.
              $$

              Then you can verify that
              $$
              begin{pmatrix}
              x\
              y
              end{pmatrix}
              =
              begin{pmatrix}
              p frac{cos gamma} {cos theta_1} cos(u+theta_1)\
              p frac{sin gamma} {cos theta_2} cos(u+theta_2)
              end{pmatrix}
              $$

              Now subsitute $u=omega t -theta_1$:
              $$
              begin{pmatrix}
              p frac{cos gamma}{ cos theta_1} cos(omega t)\
              p frac{sin gamma}{ cos theta_2} cos(omega t-theta_1+theta_2)
              end{pmatrix}
              $$

              We identify that $phi=theta_2-theta_1$, $a=p frac{cos gamma}{ cos theta_1}$,$b=p frac{sin gamma}{ cos theta_2}$. Taking cos of both sides of the first:
              $$
              cosphi=cos(theta_2- theta_1)=cos theta_2 cos theta_1+sin theta_2 sin theta_1=cos theta_2 cos theta_1 (1+ tan theta_1 tan theta_2 )
              $$

              $$
              = frac{p cos gamma}{a} frac{ p sin gamma}{b} left(1 -frac{q^2}{p^2} right) =frac1{2ab} sin(2gamma) (p^2-q^2)
              $$

              We already see the numerator $2 a b cos phi$. Now we will "foefel" ourselves to the solution by calculating $a^2-b^2$:
              $$
              begin{align}
              a^2-b^2&=p^2 frac{cos^2 gamma}{cos^2 theta_1}-p^2 frac{sin^2 gamma}{cos^2 theta_2} = p^2 left[ cos^2 gammaleft(1+tan^2(theta_1)right)- sin^2 gammaleft(1+tan^2(theta_2)right) right]\
              &=p^2 left[ cos^2 gammaleft(1+frac{q^2}{p^2} tan^2 gammaright)- sin^2 gammaleft(1+frac{q^2}{p^2} cot^2 gammaright) right]\&=p^2 cos^2 gamma+q^2 sin^2 gamma-p^2 sin^2 gamma-q^2 cos^2 gamma=(p^2 -q^2) cos (2gamma)
              end{align}
              $$

              Putting everything together:
              $$
              cos phi=frac1{2ab} sin(2gamma) frac{(a^2-b^2)}{cos (2gamma)}=frac{a^2-b^2}{2ab} tan(2gamma) .
              $$

              Rearranging gives your formula.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                I think that your proof of the area is calculated most elegantly with Green's Theorem since you have a parametric form.



                For the angle, I think the fastest way depends on how much you know already about the ellipse, for example do you know that the center is the origin. To avoid making assumptions without verifying them, I would look for the rotation transforms the standard parametric form $(p cos u,q sin u)$ into your parametric form:
                $$
                begin{pmatrix}
                x\
                y
                end{pmatrix}
                =
                begin{pmatrix}
                cosgamma & -singamma\
                singamma & cosgamma
                end{pmatrix}
                begin{pmatrix}
                p cos u\
                q sin u
                end{pmatrix}
                =
                begin{pmatrix}
                p cos ucosgamma-q sin gamma sin(u)\
                p cos usingamma+q cos gamma sin(u)
                end{pmatrix}
                $$

                $$
                =
                begin{pmatrix}
                p cos gamma left(cos u-frac{q sin gamma}{p cos gamma} sin u right)\
                p sin gamma left(cos u+frac{q cos gamma}{p sin gamma} sin u right)
                end{pmatrix}
                $$



                Now say
                $$
                tantheta_1=frac{q}{p} tan gamma,
                $$

                $$
                tantheta_2=-frac{q}{p} cot gamma.
                $$

                Then you can verify that
                $$
                begin{pmatrix}
                x\
                y
                end{pmatrix}
                =
                begin{pmatrix}
                p frac{cos gamma} {cos theta_1} cos(u+theta_1)\
                p frac{sin gamma} {cos theta_2} cos(u+theta_2)
                end{pmatrix}
                $$

                Now subsitute $u=omega t -theta_1$:
                $$
                begin{pmatrix}
                p frac{cos gamma}{ cos theta_1} cos(omega t)\
                p frac{sin gamma}{ cos theta_2} cos(omega t-theta_1+theta_2)
                end{pmatrix}
                $$

                We identify that $phi=theta_2-theta_1$, $a=p frac{cos gamma}{ cos theta_1}$,$b=p frac{sin gamma}{ cos theta_2}$. Taking cos of both sides of the first:
                $$
                cosphi=cos(theta_2- theta_1)=cos theta_2 cos theta_1+sin theta_2 sin theta_1=cos theta_2 cos theta_1 (1+ tan theta_1 tan theta_2 )
                $$

                $$
                = frac{p cos gamma}{a} frac{ p sin gamma}{b} left(1 -frac{q^2}{p^2} right) =frac1{2ab} sin(2gamma) (p^2-q^2)
                $$

                We already see the numerator $2 a b cos phi$. Now we will "foefel" ourselves to the solution by calculating $a^2-b^2$:
                $$
                begin{align}
                a^2-b^2&=p^2 frac{cos^2 gamma}{cos^2 theta_1}-p^2 frac{sin^2 gamma}{cos^2 theta_2} = p^2 left[ cos^2 gammaleft(1+tan^2(theta_1)right)- sin^2 gammaleft(1+tan^2(theta_2)right) right]\
                &=p^2 left[ cos^2 gammaleft(1+frac{q^2}{p^2} tan^2 gammaright)- sin^2 gammaleft(1+frac{q^2}{p^2} cot^2 gammaright) right]\&=p^2 cos^2 gamma+q^2 sin^2 gamma-p^2 sin^2 gamma-q^2 cos^2 gamma=(p^2 -q^2) cos (2gamma)
                end{align}
                $$

                Putting everything together:
                $$
                cos phi=frac1{2ab} sin(2gamma) frac{(a^2-b^2)}{cos (2gamma)}=frac{a^2-b^2}{2ab} tan(2gamma) .
                $$

                Rearranging gives your formula.






                share|cite|improve this answer









                $endgroup$



                I think that your proof of the area is calculated most elegantly with Green's Theorem since you have a parametric form.



                For the angle, I think the fastest way depends on how much you know already about the ellipse, for example do you know that the center is the origin. To avoid making assumptions without verifying them, I would look for the rotation transforms the standard parametric form $(p cos u,q sin u)$ into your parametric form:
                $$
                begin{pmatrix}
                x\
                y
                end{pmatrix}
                =
                begin{pmatrix}
                cosgamma & -singamma\
                singamma & cosgamma
                end{pmatrix}
                begin{pmatrix}
                p cos u\
                q sin u
                end{pmatrix}
                =
                begin{pmatrix}
                p cos ucosgamma-q sin gamma sin(u)\
                p cos usingamma+q cos gamma sin(u)
                end{pmatrix}
                $$

                $$
                =
                begin{pmatrix}
                p cos gamma left(cos u-frac{q sin gamma}{p cos gamma} sin u right)\
                p sin gamma left(cos u+frac{q cos gamma}{p sin gamma} sin u right)
                end{pmatrix}
                $$



                Now say
                $$
                tantheta_1=frac{q}{p} tan gamma,
                $$

                $$
                tantheta_2=-frac{q}{p} cot gamma.
                $$

                Then you can verify that
                $$
                begin{pmatrix}
                x\
                y
                end{pmatrix}
                =
                begin{pmatrix}
                p frac{cos gamma} {cos theta_1} cos(u+theta_1)\
                p frac{sin gamma} {cos theta_2} cos(u+theta_2)
                end{pmatrix}
                $$

                Now subsitute $u=omega t -theta_1$:
                $$
                begin{pmatrix}
                p frac{cos gamma}{ cos theta_1} cos(omega t)\
                p frac{sin gamma}{ cos theta_2} cos(omega t-theta_1+theta_2)
                end{pmatrix}
                $$

                We identify that $phi=theta_2-theta_1$, $a=p frac{cos gamma}{ cos theta_1}$,$b=p frac{sin gamma}{ cos theta_2}$. Taking cos of both sides of the first:
                $$
                cosphi=cos(theta_2- theta_1)=cos theta_2 cos theta_1+sin theta_2 sin theta_1=cos theta_2 cos theta_1 (1+ tan theta_1 tan theta_2 )
                $$

                $$
                = frac{p cos gamma}{a} frac{ p sin gamma}{b} left(1 -frac{q^2}{p^2} right) =frac1{2ab} sin(2gamma) (p^2-q^2)
                $$

                We already see the numerator $2 a b cos phi$. Now we will "foefel" ourselves to the solution by calculating $a^2-b^2$:
                $$
                begin{align}
                a^2-b^2&=p^2 frac{cos^2 gamma}{cos^2 theta_1}-p^2 frac{sin^2 gamma}{cos^2 theta_2} = p^2 left[ cos^2 gammaleft(1+tan^2(theta_1)right)- sin^2 gammaleft(1+tan^2(theta_2)right) right]\
                &=p^2 left[ cos^2 gammaleft(1+frac{q^2}{p^2} tan^2 gammaright)- sin^2 gammaleft(1+frac{q^2}{p^2} cot^2 gammaright) right]\&=p^2 cos^2 gamma+q^2 sin^2 gamma-p^2 sin^2 gamma-q^2 cos^2 gamma=(p^2 -q^2) cos (2gamma)
                end{align}
                $$

                Putting everything together:
                $$
                cos phi=frac1{2ab} sin(2gamma) frac{(a^2-b^2)}{cos (2gamma)}=frac{a^2-b^2}{2ab} tan(2gamma) .
                $$

                Rearranging gives your formula.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 28 '18 at 13:35









                Arne DecadtArne Decadt

                313




                313






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054693%2fangle-of-ellipses-long-axis-and-abscisa%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents