Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$
$begingroup$
Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.
I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$
But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track
stochastic-processes brownian-motion markov-process stochastic-analysis
$endgroup$
add a comment |
$begingroup$
Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.
I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$
But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track
stochastic-processes brownian-motion markov-process stochastic-analysis
$endgroup$
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53
add a comment |
$begingroup$
Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.
I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$
But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track
stochastic-processes brownian-motion markov-process stochastic-analysis
$endgroup$
Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.
I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$
But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track
stochastic-processes brownian-motion markov-process stochastic-analysis
stochastic-processes brownian-motion markov-process stochastic-analysis
edited Dec 11 '18 at 14:11
saz
81.8k862131
81.8k862131
asked Dec 10 '18 at 16:02
user3503589user3503589
1,3051821
1,3051821
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53
add a comment |
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$
Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$
for any $x in mathbb{R}$, we find
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$
As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$
Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.
$endgroup$
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034100%2fwhy-is-pbb-t-t-b-in-infty-b-1-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$
Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$
for any $x in mathbb{R}$, we find
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$
As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$
Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.
$endgroup$
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
add a comment |
$begingroup$
Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$
Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$
for any $x in mathbb{R}$, we find
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$
As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$
Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.
$endgroup$
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
add a comment |
$begingroup$
Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$
Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$
for any $x in mathbb{R}$, we find
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$
As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$
Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.
$endgroup$
Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$
Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$
for any $x in mathbb{R}$, we find
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$
As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies
$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$
Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.
answered Dec 10 '18 at 18:01
sazsaz
81.8k862131
81.8k862131
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
add a comment |
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44
1
1
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034100%2fwhy-is-pbb-t-t-b-in-infty-b-1-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52
$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53