Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$












1












$begingroup$


Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.



I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$



But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $U$....?
    $endgroup$
    – saz
    Dec 10 '18 at 17:52










  • $begingroup$
    $(U_tf)(x)=E^x(f(X_t)$
    $endgroup$
    – user3503589
    Dec 10 '18 at 17:53
















1












$begingroup$


Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.



I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$



But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track



enter image description here










share|cite|improve this question











$endgroup$












  • $begingroup$
    What is $U$....?
    $endgroup$
    – saz
    Dec 10 '18 at 17:52










  • $begingroup$
    $(U_tf)(x)=E^x(f(X_t)$
    $endgroup$
    – user3503589
    Dec 10 '18 at 17:53














1












1








1





$begingroup$


Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.



I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$



But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track



enter image description here










share|cite|improve this question











$endgroup$




Why is $P^b(B_{T-T_b} in (-infty,b))=1/2$ on the set ${T_b<t} $ where $T_b=inf{t ge 0 :B_t=b}$ and $T=t 1_{{T_b<t}}+infty 1_{{T_b ge 0}}$.



I am trying to understand Proposition 2.6.19 in Shreve
and trying to figure out why $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=1/2$$
My attempt
I write $$(U_{T(omega)-T_b(omega)}1_Gamma)(B_{S(omega)}(omega))=P^b(B_{t-T_b)} in (-infty,b))=P^0(B_{t-T_b)} in (-infty,0))$$



But then can I somehow argue that the distribution of $B_{t-T_b}$ is normal with mean $0$? I cant see why this should be true? Or am I totally off track



enter image description here







stochastic-processes brownian-motion markov-process stochastic-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 11 '18 at 14:11









saz

81.8k862131




81.8k862131










asked Dec 10 '18 at 16:02









user3503589user3503589

1,3051821




1,3051821












  • $begingroup$
    What is $U$....?
    $endgroup$
    – saz
    Dec 10 '18 at 17:52










  • $begingroup$
    $(U_tf)(x)=E^x(f(X_t)$
    $endgroup$
    – user3503589
    Dec 10 '18 at 17:53


















  • $begingroup$
    What is $U$....?
    $endgroup$
    – saz
    Dec 10 '18 at 17:52










  • $begingroup$
    $(U_tf)(x)=E^x(f(X_t)$
    $endgroup$
    – user3503589
    Dec 10 '18 at 17:53
















$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52




$begingroup$
What is $U$....?
$endgroup$
– saz
Dec 10 '18 at 17:52












$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53




$begingroup$
$(U_tf)(x)=E^x(f(X_t)$
$endgroup$
– user3503589
Dec 10 '18 at 17:53










1 Answer
1






active

oldest

votes


















2












$begingroup$

Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$



Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$



for any $x in mathbb{R}$, we find



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$



As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$



Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    . Thank you . Now it’s all clear .
    $endgroup$
    – user3503589
    Dec 10 '18 at 19:44






  • 1




    $begingroup$
    @user3503589 You are welcome; glad I could help you.
    $endgroup$
    – saz
    Dec 10 '18 at 20:26











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034100%2fwhy-is-pbb-t-t-b-in-infty-b-1-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$



Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$



for any $x in mathbb{R}$, we find



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$



As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$



Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    . Thank you . Now it’s all clear .
    $endgroup$
    – user3503589
    Dec 10 '18 at 19:44






  • 1




    $begingroup$
    @user3503589 You are welcome; glad I could help you.
    $endgroup$
    – saz
    Dec 10 '18 at 20:26
















2












$begingroup$

Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$



Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$



for any $x in mathbb{R}$, we find



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$



As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$



Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    . Thank you . Now it’s all clear .
    $endgroup$
    – user3503589
    Dec 10 '18 at 19:44






  • 1




    $begingroup$
    @user3503589 You are welcome; glad I could help you.
    $endgroup$
    – saz
    Dec 10 '18 at 20:26














2












2








2





$begingroup$

Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$



Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$



for any $x in mathbb{R}$, we find



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$



As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$



Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.






share|cite|improve this answer









$endgroup$



Fix $t>0$. By the very definition of $S=T_b$ we have $B_{S(omega)}(omega)=b$, i.e.



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = (U_{t} 1_{(-infty,b)})(b).$$



Since $$ (U_t 1_{(-infty,b)})(x) = mathbb{P}^x(B_t < b)$$



for any $x in mathbb{R}$, we find



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^b(B_t < b).$$



As $mathbb{P}^b(B_t < b) = mathbb{P}^0(b+B_t < b)$ this implies



$$(U_{t} 1_{(-infty,b)})(B_{S(omega)}(omega)) = mathbb{P}^0(B_t < 0) = frac{1}{2}.$$



Since $t>0$ is arbitrary, we can choose in particular $t:=T(omega)-S(omega)$ for $omega in {T<infty} subseteq {S<T}$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 10 '18 at 18:01









sazsaz

81.8k862131




81.8k862131












  • $begingroup$
    . Thank you . Now it’s all clear .
    $endgroup$
    – user3503589
    Dec 10 '18 at 19:44






  • 1




    $begingroup$
    @user3503589 You are welcome; glad I could help you.
    $endgroup$
    – saz
    Dec 10 '18 at 20:26


















  • $begingroup$
    . Thank you . Now it’s all clear .
    $endgroup$
    – user3503589
    Dec 10 '18 at 19:44






  • 1




    $begingroup$
    @user3503589 You are welcome; glad I could help you.
    $endgroup$
    – saz
    Dec 10 '18 at 20:26
















$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44




$begingroup$
. Thank you . Now it’s all clear .
$endgroup$
– user3503589
Dec 10 '18 at 19:44




1




1




$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26




$begingroup$
@user3503589 You are welcome; glad I could help you.
$endgroup$
– saz
Dec 10 '18 at 20:26


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034100%2fwhy-is-pbb-t-t-b-in-infty-b-1-2%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?