Principal part of function at a pole
$begingroup$
I have a function $dfrac{e^zz}{z^2-1}$. It has isolated singularities $z=pm 1$.
To find the principal part at $z=1$, I am trying to find a Laurent series expansion around $z=1$. I have the following mess:
$dfrac{ze^z}{(z-1)(z+1)}=sum_{k=0}^infty dfrac{z^kz}{k!(z+1)(z-1)}=sum_{k=0}^infty dfrac{((z-1)+1)^k((z-1)+1)}{k!((z-1)+2)(z-1)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^nrbrack((z-1)+1)}{k!((z-1)+2)(z-1)}=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+1)}{k!((z-1)+2)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+2)-lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack}{k!((z-1)+2)}=
\
sum_{k=0}^inftydfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!}- dfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!((z-1)+2)}$.
How can I get a Laurent series just with powers of $(z-1)$ so that I can find the principal part at $z=1$ (that is, the part of the series with negative powers)?
complex-analysis laurent-series singularity
$endgroup$
add a comment |
$begingroup$
I have a function $dfrac{e^zz}{z^2-1}$. It has isolated singularities $z=pm 1$.
To find the principal part at $z=1$, I am trying to find a Laurent series expansion around $z=1$. I have the following mess:
$dfrac{ze^z}{(z-1)(z+1)}=sum_{k=0}^infty dfrac{z^kz}{k!(z+1)(z-1)}=sum_{k=0}^infty dfrac{((z-1)+1)^k((z-1)+1)}{k!((z-1)+2)(z-1)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^nrbrack((z-1)+1)}{k!((z-1)+2)(z-1)}=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+1)}{k!((z-1)+2)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+2)-lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack}{k!((z-1)+2)}=
\
sum_{k=0}^inftydfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!}- dfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!((z-1)+2)}$.
How can I get a Laurent series just with powers of $(z-1)$ so that I can find the principal part at $z=1$ (that is, the part of the series with negative powers)?
complex-analysis laurent-series singularity
$endgroup$
add a comment |
$begingroup$
I have a function $dfrac{e^zz}{z^2-1}$. It has isolated singularities $z=pm 1$.
To find the principal part at $z=1$, I am trying to find a Laurent series expansion around $z=1$. I have the following mess:
$dfrac{ze^z}{(z-1)(z+1)}=sum_{k=0}^infty dfrac{z^kz}{k!(z+1)(z-1)}=sum_{k=0}^infty dfrac{((z-1)+1)^k((z-1)+1)}{k!((z-1)+2)(z-1)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^nrbrack((z-1)+1)}{k!((z-1)+2)(z-1)}=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+1)}{k!((z-1)+2)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+2)-lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack}{k!((z-1)+2)}=
\
sum_{k=0}^inftydfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!}- dfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!((z-1)+2)}$.
How can I get a Laurent series just with powers of $(z-1)$ so that I can find the principal part at $z=1$ (that is, the part of the series with negative powers)?
complex-analysis laurent-series singularity
$endgroup$
I have a function $dfrac{e^zz}{z^2-1}$. It has isolated singularities $z=pm 1$.
To find the principal part at $z=1$, I am trying to find a Laurent series expansion around $z=1$. I have the following mess:
$dfrac{ze^z}{(z-1)(z+1)}=sum_{k=0}^infty dfrac{z^kz}{k!(z+1)(z-1)}=sum_{k=0}^infty dfrac{((z-1)+1)^k((z-1)+1)}{k!((z-1)+2)(z-1)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^nrbrack((z-1)+1)}{k!((z-1)+2)(z-1)}=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+1)}{k!((z-1)+2)}
\
=sum_{k=0}^infty dfrac{lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack((z-1)+2)-lbracksum_{n=0}^kbinom{k}{n}(z-1)^{n-1}rbrack}{k!((z-1)+2)}=
\
sum_{k=0}^inftydfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!}- dfrac{sum_{n=0}^kbinom{k}{n}(z-1)^{n-1}}{k!((z-1)+2)}$.
How can I get a Laurent series just with powers of $(z-1)$ so that I can find the principal part at $z=1$ (that is, the part of the series with negative powers)?
complex-analysis laurent-series singularity
complex-analysis laurent-series singularity
edited Dec 10 '18 at 16:22
José Carlos Santos
170k23132238
170k23132238
asked Dec 10 '18 at 15:50
HBHSUHBHSU
302111
302111
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You are acting as if there should be a simple expression for that series. I doubt it. Consider the function $fcolonmathbb{C}setminus{-1}longrightarrowmathbb C$ defined by $f(z)=frac{ze^z}{z+1}$. The first terms of its Taylor series are$$frac e2+frac{3e}4(z-1)+frac{3e}8(z-1)^2+frac{7e}{48}(z-1)^3+cdots,$$from which you can deduce that the Laurent series that you're after is$$frac e{2(z-1)}+frac{3e}4+frac{3e}8(z-1)+frac{7e}{48}(z-1)^2+cdots,$$but that's all.
$endgroup$
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
add a comment |
$begingroup$
You can rewrite your function as
$$frac{e^{w+1}(w+1)}{(w+1)^2-1}=efrac{e^w(w+1)}{w(w+2)}tag1$$
where we make the change $w+1=z$. Hence the Laurent series of your original function around $z=1$ is the Laurent series of the expression in $(1)$ around zero, that is
$$begin{align}efrac{e^w(w+1)}{w(w+2)}&=frac{e}wleft(1-frac1{w+2}right)sum_{k=0}^inftyfrac{w^k}{k!}\
&=frac{e}wleft(1-frac12sum_{k=0}^inftyleft(-frac{w}2right)^kright)left(sum_{k=0}^inftyfrac{w^k}{k!}right)\
&=esum_{k=0}^inftyleft(sum_{j=0}^kleft(-frac12right)^{j+1}frac{(-1)^{delta_{j,0}}}{(k-j)!}right)w^{k-1}end{align}$$
where $delta_{0,j}$ is the Kronecker delta. Then we only need to substitute $w=z-1$ in the last expression to have the form of the Laurent series of your original function around $z=1$.
$endgroup$
add a comment |
$begingroup$
The function $f(z)=frac{e^z z}{z^2-1}$ can be written as $frac{1}{z-1}$ times $frac{e^z z}{z+1}$, this last function being holomorphic in a neighbourhood of $z=1$. Therefore in $z=1$ the function $f$ has a pole of order $1$. This means that the Laurent series of the function $f$ around $z=1$ can be written as:
$$
f(z)=frac{a_{-1}}{z-1}+a_0+a_1(z-1)+a_2(z-1)+dots
$$
Now, if you are interested only in the part with negative powers, all you want to know is the value of $a_{-1}$, which can be evaluated via the limit:
$$
lim_{zto 1} f(z)(z-1) = lim_{zto 1} frac{e^z z}{z+1}=frac{e}{2}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034083%2fprincipal-part-of-function-at-a-pole%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You are acting as if there should be a simple expression for that series. I doubt it. Consider the function $fcolonmathbb{C}setminus{-1}longrightarrowmathbb C$ defined by $f(z)=frac{ze^z}{z+1}$. The first terms of its Taylor series are$$frac e2+frac{3e}4(z-1)+frac{3e}8(z-1)^2+frac{7e}{48}(z-1)^3+cdots,$$from which you can deduce that the Laurent series that you're after is$$frac e{2(z-1)}+frac{3e}4+frac{3e}8(z-1)+frac{7e}{48}(z-1)^2+cdots,$$but that's all.
$endgroup$
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
add a comment |
$begingroup$
You are acting as if there should be a simple expression for that series. I doubt it. Consider the function $fcolonmathbb{C}setminus{-1}longrightarrowmathbb C$ defined by $f(z)=frac{ze^z}{z+1}$. The first terms of its Taylor series are$$frac e2+frac{3e}4(z-1)+frac{3e}8(z-1)^2+frac{7e}{48}(z-1)^3+cdots,$$from which you can deduce that the Laurent series that you're after is$$frac e{2(z-1)}+frac{3e}4+frac{3e}8(z-1)+frac{7e}{48}(z-1)^2+cdots,$$but that's all.
$endgroup$
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
add a comment |
$begingroup$
You are acting as if there should be a simple expression for that series. I doubt it. Consider the function $fcolonmathbb{C}setminus{-1}longrightarrowmathbb C$ defined by $f(z)=frac{ze^z}{z+1}$. The first terms of its Taylor series are$$frac e2+frac{3e}4(z-1)+frac{3e}8(z-1)^2+frac{7e}{48}(z-1)^3+cdots,$$from which you can deduce that the Laurent series that you're after is$$frac e{2(z-1)}+frac{3e}4+frac{3e}8(z-1)+frac{7e}{48}(z-1)^2+cdots,$$but that's all.
$endgroup$
You are acting as if there should be a simple expression for that series. I doubt it. Consider the function $fcolonmathbb{C}setminus{-1}longrightarrowmathbb C$ defined by $f(z)=frac{ze^z}{z+1}$. The first terms of its Taylor series are$$frac e2+frac{3e}4(z-1)+frac{3e}8(z-1)^2+frac{7e}{48}(z-1)^3+cdots,$$from which you can deduce that the Laurent series that you're after is$$frac e{2(z-1)}+frac{3e}4+frac{3e}8(z-1)+frac{7e}{48}(z-1)^2+cdots,$$but that's all.
edited Dec 10 '18 at 19:04
John Hughes
64.9k24292
64.9k24292
answered Dec 10 '18 at 16:03
José Carlos SantosJosé Carlos Santos
170k23132238
170k23132238
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
add a comment |
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
How do you get the first expansion for $dfrac{ze^z}{z+1}$?
$endgroup$
– HBHSU
Dec 10 '18 at 16:40
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
$begingroup$
You compute $f(1), frac{f'(1)}{1!}, frac{f''(1)}{2!}$, etc., perhaps by hand. It is, after all, a Taylor series.
$endgroup$
– John Hughes
Dec 10 '18 at 19:05
add a comment |
$begingroup$
You can rewrite your function as
$$frac{e^{w+1}(w+1)}{(w+1)^2-1}=efrac{e^w(w+1)}{w(w+2)}tag1$$
where we make the change $w+1=z$. Hence the Laurent series of your original function around $z=1$ is the Laurent series of the expression in $(1)$ around zero, that is
$$begin{align}efrac{e^w(w+1)}{w(w+2)}&=frac{e}wleft(1-frac1{w+2}right)sum_{k=0}^inftyfrac{w^k}{k!}\
&=frac{e}wleft(1-frac12sum_{k=0}^inftyleft(-frac{w}2right)^kright)left(sum_{k=0}^inftyfrac{w^k}{k!}right)\
&=esum_{k=0}^inftyleft(sum_{j=0}^kleft(-frac12right)^{j+1}frac{(-1)^{delta_{j,0}}}{(k-j)!}right)w^{k-1}end{align}$$
where $delta_{0,j}$ is the Kronecker delta. Then we only need to substitute $w=z-1$ in the last expression to have the form of the Laurent series of your original function around $z=1$.
$endgroup$
add a comment |
$begingroup$
You can rewrite your function as
$$frac{e^{w+1}(w+1)}{(w+1)^2-1}=efrac{e^w(w+1)}{w(w+2)}tag1$$
where we make the change $w+1=z$. Hence the Laurent series of your original function around $z=1$ is the Laurent series of the expression in $(1)$ around zero, that is
$$begin{align}efrac{e^w(w+1)}{w(w+2)}&=frac{e}wleft(1-frac1{w+2}right)sum_{k=0}^inftyfrac{w^k}{k!}\
&=frac{e}wleft(1-frac12sum_{k=0}^inftyleft(-frac{w}2right)^kright)left(sum_{k=0}^inftyfrac{w^k}{k!}right)\
&=esum_{k=0}^inftyleft(sum_{j=0}^kleft(-frac12right)^{j+1}frac{(-1)^{delta_{j,0}}}{(k-j)!}right)w^{k-1}end{align}$$
where $delta_{0,j}$ is the Kronecker delta. Then we only need to substitute $w=z-1$ in the last expression to have the form of the Laurent series of your original function around $z=1$.
$endgroup$
add a comment |
$begingroup$
You can rewrite your function as
$$frac{e^{w+1}(w+1)}{(w+1)^2-1}=efrac{e^w(w+1)}{w(w+2)}tag1$$
where we make the change $w+1=z$. Hence the Laurent series of your original function around $z=1$ is the Laurent series of the expression in $(1)$ around zero, that is
$$begin{align}efrac{e^w(w+1)}{w(w+2)}&=frac{e}wleft(1-frac1{w+2}right)sum_{k=0}^inftyfrac{w^k}{k!}\
&=frac{e}wleft(1-frac12sum_{k=0}^inftyleft(-frac{w}2right)^kright)left(sum_{k=0}^inftyfrac{w^k}{k!}right)\
&=esum_{k=0}^inftyleft(sum_{j=0}^kleft(-frac12right)^{j+1}frac{(-1)^{delta_{j,0}}}{(k-j)!}right)w^{k-1}end{align}$$
where $delta_{0,j}$ is the Kronecker delta. Then we only need to substitute $w=z-1$ in the last expression to have the form of the Laurent series of your original function around $z=1$.
$endgroup$
You can rewrite your function as
$$frac{e^{w+1}(w+1)}{(w+1)^2-1}=efrac{e^w(w+1)}{w(w+2)}tag1$$
where we make the change $w+1=z$. Hence the Laurent series of your original function around $z=1$ is the Laurent series of the expression in $(1)$ around zero, that is
$$begin{align}efrac{e^w(w+1)}{w(w+2)}&=frac{e}wleft(1-frac1{w+2}right)sum_{k=0}^inftyfrac{w^k}{k!}\
&=frac{e}wleft(1-frac12sum_{k=0}^inftyleft(-frac{w}2right)^kright)left(sum_{k=0}^inftyfrac{w^k}{k!}right)\
&=esum_{k=0}^inftyleft(sum_{j=0}^kleft(-frac12right)^{j+1}frac{(-1)^{delta_{j,0}}}{(k-j)!}right)w^{k-1}end{align}$$
where $delta_{0,j}$ is the Kronecker delta. Then we only need to substitute $w=z-1$ in the last expression to have the form of the Laurent series of your original function around $z=1$.
edited Dec 11 '18 at 9:52
answered Dec 10 '18 at 16:16
MasacrosoMasacroso
13.2k41747
13.2k41747
add a comment |
add a comment |
$begingroup$
The function $f(z)=frac{e^z z}{z^2-1}$ can be written as $frac{1}{z-1}$ times $frac{e^z z}{z+1}$, this last function being holomorphic in a neighbourhood of $z=1$. Therefore in $z=1$ the function $f$ has a pole of order $1$. This means that the Laurent series of the function $f$ around $z=1$ can be written as:
$$
f(z)=frac{a_{-1}}{z-1}+a_0+a_1(z-1)+a_2(z-1)+dots
$$
Now, if you are interested only in the part with negative powers, all you want to know is the value of $a_{-1}$, which can be evaluated via the limit:
$$
lim_{zto 1} f(z)(z-1) = lim_{zto 1} frac{e^z z}{z+1}=frac{e}{2}
$$
$endgroup$
add a comment |
$begingroup$
The function $f(z)=frac{e^z z}{z^2-1}$ can be written as $frac{1}{z-1}$ times $frac{e^z z}{z+1}$, this last function being holomorphic in a neighbourhood of $z=1$. Therefore in $z=1$ the function $f$ has a pole of order $1$. This means that the Laurent series of the function $f$ around $z=1$ can be written as:
$$
f(z)=frac{a_{-1}}{z-1}+a_0+a_1(z-1)+a_2(z-1)+dots
$$
Now, if you are interested only in the part with negative powers, all you want to know is the value of $a_{-1}$, which can be evaluated via the limit:
$$
lim_{zto 1} f(z)(z-1) = lim_{zto 1} frac{e^z z}{z+1}=frac{e}{2}
$$
$endgroup$
add a comment |
$begingroup$
The function $f(z)=frac{e^z z}{z^2-1}$ can be written as $frac{1}{z-1}$ times $frac{e^z z}{z+1}$, this last function being holomorphic in a neighbourhood of $z=1$. Therefore in $z=1$ the function $f$ has a pole of order $1$. This means that the Laurent series of the function $f$ around $z=1$ can be written as:
$$
f(z)=frac{a_{-1}}{z-1}+a_0+a_1(z-1)+a_2(z-1)+dots
$$
Now, if you are interested only in the part with negative powers, all you want to know is the value of $a_{-1}$, which can be evaluated via the limit:
$$
lim_{zto 1} f(z)(z-1) = lim_{zto 1} frac{e^z z}{z+1}=frac{e}{2}
$$
$endgroup$
The function $f(z)=frac{e^z z}{z^2-1}$ can be written as $frac{1}{z-1}$ times $frac{e^z z}{z+1}$, this last function being holomorphic in a neighbourhood of $z=1$. Therefore in $z=1$ the function $f$ has a pole of order $1$. This means that the Laurent series of the function $f$ around $z=1$ can be written as:
$$
f(z)=frac{a_{-1}}{z-1}+a_0+a_1(z-1)+a_2(z-1)+dots
$$
Now, if you are interested only in the part with negative powers, all you want to know is the value of $a_{-1}$, which can be evaluated via the limit:
$$
lim_{zto 1} f(z)(z-1) = lim_{zto 1} frac{e^z z}{z+1}=frac{e}{2}
$$
answered Dec 10 '18 at 18:56
FormulaWriterFormulaWriter
412
412
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034083%2fprincipal-part-of-function-at-a-pole%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown