Prove the equality of Parseval
$begingroup$
Let $f$ a continuous function in $[-L,L]$ with $f'$ piecewise continuous. Suppose $f(-L)=f(L)$, then the coefficients of fourier of $f$ in $[-L,L]$ satisfy:
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)=frac{1}{L}int_{-L}^{L}f^2(x)dx.$$
My attempt
As $f$ is integrable in $[-L,L]$ the coefficients of fourier serie is
$$a_0=frac{1}{2L}intlimits_{-L}^{L}f(x)dx$$
$$a_n=frac{1}{L}intlimits_{-L}^{L}f(x)cos(frac{npi x}{L})dx$$
$$b_n=frac{1}{L}intlimits_{-L}^{L}f(x)sin(frac{npi x}{L})dx.$$
Let the N-esima partial sum of fourier serie of $f$
$$S_N(x)=a_0+sumlimits_{n=1}^{N}[a_ncos(frac{npi x}{L})+b_nsin(frac{npi x}{L})].$$
I know by Bessel inequality
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)leqfrac{1}{L}int_{-L}^{L}f^2(x)dx.$$
Here I'm stuck. Can someone help me?
calculus fourier-analysis harmonic-analysis
$endgroup$
add a comment |
$begingroup$
Let $f$ a continuous function in $[-L,L]$ with $f'$ piecewise continuous. Suppose $f(-L)=f(L)$, then the coefficients of fourier of $f$ in $[-L,L]$ satisfy:
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)=frac{1}{L}int_{-L}^{L}f^2(x)dx.$$
My attempt
As $f$ is integrable in $[-L,L]$ the coefficients of fourier serie is
$$a_0=frac{1}{2L}intlimits_{-L}^{L}f(x)dx$$
$$a_n=frac{1}{L}intlimits_{-L}^{L}f(x)cos(frac{npi x}{L})dx$$
$$b_n=frac{1}{L}intlimits_{-L}^{L}f(x)sin(frac{npi x}{L})dx.$$
Let the N-esima partial sum of fourier serie of $f$
$$S_N(x)=a_0+sumlimits_{n=1}^{N}[a_ncos(frac{npi x}{L})+b_nsin(frac{npi x}{L})].$$
I know by Bessel inequality
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)leqfrac{1}{L}int_{-L}^{L}f^2(x)dx.$$
Here I'm stuck. Can someone help me?
calculus fourier-analysis harmonic-analysis
$endgroup$
1
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42
add a comment |
$begingroup$
Let $f$ a continuous function in $[-L,L]$ with $f'$ piecewise continuous. Suppose $f(-L)=f(L)$, then the coefficients of fourier of $f$ in $[-L,L]$ satisfy:
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)=frac{1}{L}int_{-L}^{L}f^2(x)dx.$$
My attempt
As $f$ is integrable in $[-L,L]$ the coefficients of fourier serie is
$$a_0=frac{1}{2L}intlimits_{-L}^{L}f(x)dx$$
$$a_n=frac{1}{L}intlimits_{-L}^{L}f(x)cos(frac{npi x}{L})dx$$
$$b_n=frac{1}{L}intlimits_{-L}^{L}f(x)sin(frac{npi x}{L})dx.$$
Let the N-esima partial sum of fourier serie of $f$
$$S_N(x)=a_0+sumlimits_{n=1}^{N}[a_ncos(frac{npi x}{L})+b_nsin(frac{npi x}{L})].$$
I know by Bessel inequality
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)leqfrac{1}{L}int_{-L}^{L}f^2(x)dx.$$
Here I'm stuck. Can someone help me?
calculus fourier-analysis harmonic-analysis
$endgroup$
Let $f$ a continuous function in $[-L,L]$ with $f'$ piecewise continuous. Suppose $f(-L)=f(L)$, then the coefficients of fourier of $f$ in $[-L,L]$ satisfy:
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)=frac{1}{L}int_{-L}^{L}f^2(x)dx.$$
My attempt
As $f$ is integrable in $[-L,L]$ the coefficients of fourier serie is
$$a_0=frac{1}{2L}intlimits_{-L}^{L}f(x)dx$$
$$a_n=frac{1}{L}intlimits_{-L}^{L}f(x)cos(frac{npi x}{L})dx$$
$$b_n=frac{1}{L}intlimits_{-L}^{L}f(x)sin(frac{npi x}{L})dx.$$
Let the N-esima partial sum of fourier serie of $f$
$$S_N(x)=a_0+sumlimits_{n=1}^{N}[a_ncos(frac{npi x}{L})+b_nsin(frac{npi x}{L})].$$
I know by Bessel inequality
$$2a_0+sum_{n=1}^infty (a_n^2+b_n^2)leqfrac{1}{L}int_{-L}^{L}f^2(x)dx.$$
Here I'm stuck. Can someone help me?
calculus fourier-analysis harmonic-analysis
calculus fourier-analysis harmonic-analysis
edited Dec 10 '18 at 16:59
rafa11111
1,1932417
1,1932417
asked Dec 10 '18 at 16:14
Bvss12Bvss12
1,821619
1,821619
1
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42
add a comment |
1
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42
1
1
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint: Just consider it intuitively. Suppose that
$$f=sum_{n=1}^{N}b_nsinleft(frac{pi n x}{L}right)$$
then
$$f^2=sum_{n,k=1}^{N}b_{n}b_{k}sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right).$$
Since
$$int_{-L}^L sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right)dx=Ldelta_{n,k}$$
we have that in this case
$$int_{-L}^L f^2 dx=Lsum_{n,k=1}^{N}b_{n}b_{k}delta_{n,k}=Lsum_{n=1}^N b_n^2.$$
The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.
$endgroup$
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034111%2fprove-the-equality-of-parseval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Just consider it intuitively. Suppose that
$$f=sum_{n=1}^{N}b_nsinleft(frac{pi n x}{L}right)$$
then
$$f^2=sum_{n,k=1}^{N}b_{n}b_{k}sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right).$$
Since
$$int_{-L}^L sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right)dx=Ldelta_{n,k}$$
we have that in this case
$$int_{-L}^L f^2 dx=Lsum_{n,k=1}^{N}b_{n}b_{k}delta_{n,k}=Lsum_{n=1}^N b_n^2.$$
The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.
$endgroup$
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
add a comment |
$begingroup$
Hint: Just consider it intuitively. Suppose that
$$f=sum_{n=1}^{N}b_nsinleft(frac{pi n x}{L}right)$$
then
$$f^2=sum_{n,k=1}^{N}b_{n}b_{k}sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right).$$
Since
$$int_{-L}^L sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right)dx=Ldelta_{n,k}$$
we have that in this case
$$int_{-L}^L f^2 dx=Lsum_{n,k=1}^{N}b_{n}b_{k}delta_{n,k}=Lsum_{n=1}^N b_n^2.$$
The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.
$endgroup$
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
add a comment |
$begingroup$
Hint: Just consider it intuitively. Suppose that
$$f=sum_{n=1}^{N}b_nsinleft(frac{pi n x}{L}right)$$
then
$$f^2=sum_{n,k=1}^{N}b_{n}b_{k}sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right).$$
Since
$$int_{-L}^L sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right)dx=Ldelta_{n,k}$$
we have that in this case
$$int_{-L}^L f^2 dx=Lsum_{n,k=1}^{N}b_{n}b_{k}delta_{n,k}=Lsum_{n=1}^N b_n^2.$$
The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.
$endgroup$
Hint: Just consider it intuitively. Suppose that
$$f=sum_{n=1}^{N}b_nsinleft(frac{pi n x}{L}right)$$
then
$$f^2=sum_{n,k=1}^{N}b_{n}b_{k}sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right).$$
Since
$$int_{-L}^L sinleft(frac{pi n x}{L}right)sinleft(frac{pi k x}{L}right)dx=Ldelta_{n,k}$$
we have that in this case
$$int_{-L}^L f^2 dx=Lsum_{n,k=1}^{N}b_{n}b_{k}delta_{n,k}=Lsum_{n=1}^N b_n^2.$$
The square of the function will sum over all possible pairs, and pairs that aren't the same will integrate to zero. How can you extend this intuition for finite sums to infinite sums? The argument is also the same when you toss in cosines and a constant term.
edited Dec 10 '18 at 16:51
answered Dec 10 '18 at 16:42
Will FisherWill Fisher
4,05311132
4,05311132
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
add a comment |
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
In this case i need $f=a_0+sum_{n=1}^{N}[a_ncos (frac{npi x}{L}+b_nsin(frac{pi n x}{L})]$ and the square of this. no?
$endgroup$
– Bvss12
Dec 10 '18 at 16:59
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
Yes, but it is the same argument when you also add those terms in because $$int_{-L}^Lsinleft(frac{pi n x}{L}right)cosleft(frac{pi k x}{L}right)dx = 0.$$
$endgroup$
– Will Fisher
Dec 10 '18 at 17:02
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
$begingroup$
By the way, Parsevel's theorem gives $$frac{1}{L}int_{-L}^L f^2 dx=frac{1}{2}a_0^2+sum_{nge 1}(a_n^2+b_n^2).$$ Your $a_0$ term is off.
$endgroup$
– Will Fisher
Dec 10 '18 at 17:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034111%2fprove-the-equality-of-parseval%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I think the first term is wrong. Just plug in $f(x)=C$.
$endgroup$
– Andrei
Dec 10 '18 at 16:34
$begingroup$
Yes sorry @Andrei is $2L$
$endgroup$
– Bvss12
Dec 10 '18 at 16:35
$begingroup$
There should be a square too.
$endgroup$
– Andrei
Dec 10 '18 at 16:42