How to solve a system of ODE's using laplace transform?
$begingroup$
System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$
Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$
The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$
This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?
ordinary-differential-equations laplace-transform
$endgroup$
add a comment |
$begingroup$
System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$
Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$
The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$
This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?
ordinary-differential-equations laplace-transform
$endgroup$
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53
add a comment |
$begingroup$
System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$
Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$
The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$
This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?
ordinary-differential-equations laplace-transform
$endgroup$
System of ODE's:
$$y_1^"=16y_2$$
$$y_2^"=16y_1$$
Initial conditions : $$y_1(0)=2,space y_1^{'}(0)=12$$
$$y_2(0)=6, space y_2^{'}(0)=4$$
The equations i get once i do the laplace transform are:
$$ s^2 mathbf Y_1(s)-12s-2=16 mathbf Y_2(s)$$
$$ s^2 mathbf Y_2(s)-4s-6=16 mathbf Y_1(s)$$
Then I put $mathbf Y_2(s)$ in terms of $mathbf Y_1(s)$
This gave me $$ mathbf Y_2(s)=frac{4s^3+6s^2+192s+32}{s^4-256}$$
I've tried to do partial fractions but keep getting the wrong answer, is there another way?
ordinary-differential-equations laplace-transform
ordinary-differential-equations laplace-transform
asked Dec 10 '18 at 16:13
Elliot SilverElliot Silver
406
406
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53
add a comment |
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you do partial fractions this is what you should get
$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$
Use the transform for each term
$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$
EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that
begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}
And from here you conclude
begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}
And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$
$endgroup$
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034108%2fhow-to-solve-a-system-of-odes-using-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you do partial fractions this is what you should get
$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$
Use the transform for each term
$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$
EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that
begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}
And from here you conclude
begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}
And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$
$endgroup$
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
add a comment |
$begingroup$
If you do partial fractions this is what you should get
$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$
Use the transform for each term
$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$
EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that
begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}
And from here you conclude
begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}
And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$
$endgroup$
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
add a comment |
$begingroup$
If you do partial fractions this is what you should get
$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$
Use the transform for each term
$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$
EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that
begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}
And from here you conclude
begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}
And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$
$endgroup$
If you do partial fractions this is what you should get
$$
{bf Y}_2(x) = frac{9}{2}frac{1}{s - 4} + frac{7}{2}frac{1}{s + 4} - 2frac{2 s - 1}{s^2 + 4^2}
$$
Use the transform for each term
$$
y_2(t) = frac{9}{2}e^{4t} + frac{7}{2}e^{-4t} - frac{1}{2}sin 4t + 4cos 4t
$$
EDIT Note that $s^4 - 256 = (s^2 - 4^2)(s^2 + 4^2) = (s - 4)(s + 4)(s^2 + 16)$ so that
begin{eqnarray}
frac{4s^3 + 6s^2 + 192 s + 32}{s^4 - 256} &=& frac{A}{s - 4} + frac{B}{s + 4} + frac{Cs + D}{s^2 + 16}\
&=& frac{A(s + 4)(s^2 + 16) + B(s - 4)(s^2 + 16) + (s - 4)(s + 4)(Cs + D)}{(s - 4)(s + 4)(s^2 + 16)} \
&=& frac{A(s^3 + 16s + 4s^2 + 64) + B(s^3 + 16s - 4s^2 - 64)}{s^4 - 256} \
&& + frac{Cs^3 + Ds^2 -16Cs - 16D}{s^4 - 256} \
&=& frac{s^3(A + B + C) + s^2(4A - 4B + D) + s(16A + 16B - 16C)}{s^4 - 256} \
&& + frac{64A - 64B - 16D}{s^4 - 256}
end{eqnarray}
And from here you conclude
begin{eqnarray}
A + B + C &=& 4 \
4A - 4B + D &=& 6\
16A + 16B - 16C &=& 192 \
64A - 64B - 16D &=& 32
end{eqnarray}
And from here is easy to get $A = 9/2$, $B = 7/2$, $C = -4$ and $D = -2$
edited Dec 11 '18 at 17:37
answered Dec 10 '18 at 16:36
caveraccaverac
14.8k31130
14.8k31130
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
add a comment |
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
Could you show how you got those numbers in the partial fractions, I keep doing it and keep getting different numbers, thanks.
$endgroup$
– Elliot Silver
Dec 11 '18 at 13:02
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
@ElliotSilver Updated answer
$endgroup$
– caverac
Dec 11 '18 at 17:37
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
Thanks a lot, I see where i went wrong now. Appreciate the help :)
$endgroup$
– Elliot Silver
Dec 12 '18 at 11:40
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
$begingroup$
@ElliotSilver Happy to help
$endgroup$
– caverac
Dec 12 '18 at 12:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034108%2fhow-to-solve-a-system-of-odes-using-laplace-transform%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You can consider the equations for the sum and difference of $y_1$ and $y_2$, these are decoupled second order equations.
$endgroup$
– LutzL
Dec 10 '18 at 16:20
$begingroup$
I have to use Laplace transform, I meant is there a way other than putting Y2 in terms of Y1
$endgroup$
– Elliot Silver
Dec 10 '18 at 16:22
$begingroup$
@ElliotSilver You can still use Laplace transform after using LutzL's hint
$endgroup$
– Federico
Dec 10 '18 at 16:43
$begingroup$
Or compute the sums and differences after the Laplace transform.
$endgroup$
– LutzL
Dec 11 '18 at 17:53