Proving $mathbb{P}(xi_1+ xi_2+…+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2$
$begingroup$
Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.
We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$
How I should start and what to do? I really have no idea. Can somebody explain this to me?
probability probability-theory random-variables bernoulli-numbers
$endgroup$
add a comment |
$begingroup$
Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.
We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$
How I should start and what to do? I really have no idea. Can somebody explain this to me?
probability probability-theory random-variables bernoulli-numbers
$endgroup$
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07
add a comment |
$begingroup$
Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.
We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$
How I should start and what to do? I really have no idea. Can somebody explain this to me?
probability probability-theory random-variables bernoulli-numbers
$endgroup$
Let $xi_1, xi_2,...,xi_n$ be independent Bernoulli random variables in $(Omega,mathcal{P}(Omega),mathbb{P})$ and $$mathbb{P}(xi_i=0)=1-lambda_iDelta$$ and $$mathbb{P}(xi_i=1)=lambda_iDelta.$$ Here $lambda_1,lambda_2,...,lambda_n$ are positive parameters and $0< Delta <frac{1}{2max{lambda_1,lambda_2,...,lambda_n}}$.
We need to show $$mathbb{P}(xi_1+ xi_2+...+xi_n=1)=(sum_{i=1}^{n}lambda_i)Delta + mathcal{R}Delta^2,$$ where $|mathcal{R}| leq 2(sum_{i=1}^{n}lambda_i^2+(sum_{i=1}^{n}lambda_i)^2)$
How I should start and what to do? I really have no idea. Can somebody explain this to me?
probability probability-theory random-variables bernoulli-numbers
probability probability-theory random-variables bernoulli-numbers
edited Feb 3 at 0:56
J. W. Tanner
4,0611320
4,0611320
asked Dec 11 '18 at 17:23
AtstovasAtstovas
1139
1139
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07
add a comment |
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}
Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}
which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}
The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035533%2fproving-mathbbp-xi-1-xi-2-xi-n-1-sum-i-1n-lambda-i-delta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}
Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}
which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}
The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.
$endgroup$
add a comment |
$begingroup$
We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}
Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}
which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}
The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.
$endgroup$
add a comment |
$begingroup$
We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}
Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}
which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}
The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.
$endgroup$
We have
begin{align*}
Pleft(sum_{i=1}^{n}xi_i=1right) &= sum_{i=1}^{n}P(xi_i=1, {xi_j = 0: jneq i}) \
&=sum_{i=1}^nlambda_iDeltaleft(prod_{jneq i}(1-lambda_j Delta)right) \
&= sum_{i=1}^nlambda_iDeltaleft(1 - Delta sum_{jneq i}lambda_j + Delta^2sum_{j_1, j_2neq i}lambda_{j_1}lambda_{j_2} - cdotsright) \
&= sum_{i=1}^nlambda_iDelta - Delta^2 left{2sum_{i=1}^{n}sum_{j = 1}^{i-1}lambda_ilambda_jright} + cdots
end{align*}
Note that the term in curly brackets equals
begin{align*}
left(sum_{i=1}^{n}lambda_iright)^2 - sum_{i=1}^{n}lambda_i^2
end{align*}
which is clearly less in absolute value than $2(sum_{i=1}^{n}lambda_i^2 + left(sum_{i=1}^{n}lambda_iright)^2)$. Since
begin{align*}
0 < Delta < frac{1}{2max(lambda_1, cdots, lambda_n)}
end{align*}
The alternating series of sums are decreasing, so therefore the largest the sum can be is less than the remainder bound.
answered Feb 3 at 1:40
Tom ChenTom Chen
1,773715
1,773715
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035533%2fproving-mathbbp-xi-1-xi-2-xi-n-1-sum-i-1n-lambda-i-delta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Since the $xi_i$ are Bernoulli distributed, their sum is $1$ iff exactly one of the $xi_i$ is $1$ and the rest is $0$.
$endgroup$
– Tki Deneb
Dec 12 '18 at 13:07