Proof of Euler's Theorem involving curvature.
$begingroup$
Theorem: Let $φ$ be the angle, in the tangent plane, measured counterclockwise from the direction of minimum curvature $kappa_1$ . Then the normal curvature $kappa_n(φ)$ in direction $φ$ is given by $$kappa_n(varphi)=kappa_1 cos^2varphi+kappa_2sin^2varphi.$$
How do I prove this?
differential-geometry surfaces curvature
$endgroup$
add a comment |
$begingroup$
Theorem: Let $φ$ be the angle, in the tangent plane, measured counterclockwise from the direction of minimum curvature $kappa_1$ . Then the normal curvature $kappa_n(φ)$ in direction $φ$ is given by $$kappa_n(varphi)=kappa_1 cos^2varphi+kappa_2sin^2varphi.$$
How do I prove this?
differential-geometry surfaces curvature
$endgroup$
add a comment |
$begingroup$
Theorem: Let $φ$ be the angle, in the tangent plane, measured counterclockwise from the direction of minimum curvature $kappa_1$ . Then the normal curvature $kappa_n(φ)$ in direction $φ$ is given by $$kappa_n(varphi)=kappa_1 cos^2varphi+kappa_2sin^2varphi.$$
How do I prove this?
differential-geometry surfaces curvature
$endgroup$
Theorem: Let $φ$ be the angle, in the tangent plane, measured counterclockwise from the direction of minimum curvature $kappa_1$ . Then the normal curvature $kappa_n(φ)$ in direction $φ$ is given by $$kappa_n(varphi)=kappa_1 cos^2varphi+kappa_2sin^2varphi.$$
How do I prove this?
differential-geometry surfaces curvature
differential-geometry surfaces curvature
edited May 14 '16 at 7:41
none
103117
103117
asked May 12 '16 at 20:01
zermelovaczermelovac
504212
504212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The normal curvature can be defined in terms of the second fundamental form as follows: the normal curvature $k_n$ of a vector $v in T_{p}S$ is defined as $k_n = text{II}_{p}(v)=<-dN_{p}(v), v>$. Recall that the differential of the gauss map is a self-adjoint linear map and so there exists an orthonormal basis ${e_1, e_2}$ for $T_{p}S$ such that $-dN_{p}(e_1) = k_{1}e_{1}$ and $-dN_{p}(e_2) = k_{2}e_{2}$.
Thus for an arbitrary direction vector described by your $varphi$, call it $v$ can we written as a linear combination of some orthonormal basis ${e_1, e_2}$ with the above properties as $v = e_{1}cosvarphi + e_{2}sinvarphi$.
Now following the definition we get:
begin{align}
k_{n} & = text{II}_{p}(v) = -<dN_{p}(v), v> \
& =-<dN_{p}(e_{1}cosvarphi + e_{2}sinvarphi), e_{1}cosvarphi + e_{2}sinvarphi> \
& =<k_{1}e_{1}cosvarphi+k_{2}e_{2}sinvarphi, e_{2}sinvarphi+ e_{1}cosvarphi> \
& =k_{1}cos^2varphi + k_{2}sin^2varphi \
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1782829%2fproof-of-eulers-theorem-involving-curvature%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The normal curvature can be defined in terms of the second fundamental form as follows: the normal curvature $k_n$ of a vector $v in T_{p}S$ is defined as $k_n = text{II}_{p}(v)=<-dN_{p}(v), v>$. Recall that the differential of the gauss map is a self-adjoint linear map and so there exists an orthonormal basis ${e_1, e_2}$ for $T_{p}S$ such that $-dN_{p}(e_1) = k_{1}e_{1}$ and $-dN_{p}(e_2) = k_{2}e_{2}$.
Thus for an arbitrary direction vector described by your $varphi$, call it $v$ can we written as a linear combination of some orthonormal basis ${e_1, e_2}$ with the above properties as $v = e_{1}cosvarphi + e_{2}sinvarphi$.
Now following the definition we get:
begin{align}
k_{n} & = text{II}_{p}(v) = -<dN_{p}(v), v> \
& =-<dN_{p}(e_{1}cosvarphi + e_{2}sinvarphi), e_{1}cosvarphi + e_{2}sinvarphi> \
& =<k_{1}e_{1}cosvarphi+k_{2}e_{2}sinvarphi, e_{2}sinvarphi+ e_{1}cosvarphi> \
& =k_{1}cos^2varphi + k_{2}sin^2varphi \
end{align}
$endgroup$
add a comment |
$begingroup$
The normal curvature can be defined in terms of the second fundamental form as follows: the normal curvature $k_n$ of a vector $v in T_{p}S$ is defined as $k_n = text{II}_{p}(v)=<-dN_{p}(v), v>$. Recall that the differential of the gauss map is a self-adjoint linear map and so there exists an orthonormal basis ${e_1, e_2}$ for $T_{p}S$ such that $-dN_{p}(e_1) = k_{1}e_{1}$ and $-dN_{p}(e_2) = k_{2}e_{2}$.
Thus for an arbitrary direction vector described by your $varphi$, call it $v$ can we written as a linear combination of some orthonormal basis ${e_1, e_2}$ with the above properties as $v = e_{1}cosvarphi + e_{2}sinvarphi$.
Now following the definition we get:
begin{align}
k_{n} & = text{II}_{p}(v) = -<dN_{p}(v), v> \
& =-<dN_{p}(e_{1}cosvarphi + e_{2}sinvarphi), e_{1}cosvarphi + e_{2}sinvarphi> \
& =<k_{1}e_{1}cosvarphi+k_{2}e_{2}sinvarphi, e_{2}sinvarphi+ e_{1}cosvarphi> \
& =k_{1}cos^2varphi + k_{2}sin^2varphi \
end{align}
$endgroup$
add a comment |
$begingroup$
The normal curvature can be defined in terms of the second fundamental form as follows: the normal curvature $k_n$ of a vector $v in T_{p}S$ is defined as $k_n = text{II}_{p}(v)=<-dN_{p}(v), v>$. Recall that the differential of the gauss map is a self-adjoint linear map and so there exists an orthonormal basis ${e_1, e_2}$ for $T_{p}S$ such that $-dN_{p}(e_1) = k_{1}e_{1}$ and $-dN_{p}(e_2) = k_{2}e_{2}$.
Thus for an arbitrary direction vector described by your $varphi$, call it $v$ can we written as a linear combination of some orthonormal basis ${e_1, e_2}$ with the above properties as $v = e_{1}cosvarphi + e_{2}sinvarphi$.
Now following the definition we get:
begin{align}
k_{n} & = text{II}_{p}(v) = -<dN_{p}(v), v> \
& =-<dN_{p}(e_{1}cosvarphi + e_{2}sinvarphi), e_{1}cosvarphi + e_{2}sinvarphi> \
& =<k_{1}e_{1}cosvarphi+k_{2}e_{2}sinvarphi, e_{2}sinvarphi+ e_{1}cosvarphi> \
& =k_{1}cos^2varphi + k_{2}sin^2varphi \
end{align}
$endgroup$
The normal curvature can be defined in terms of the second fundamental form as follows: the normal curvature $k_n$ of a vector $v in T_{p}S$ is defined as $k_n = text{II}_{p}(v)=<-dN_{p}(v), v>$. Recall that the differential of the gauss map is a self-adjoint linear map and so there exists an orthonormal basis ${e_1, e_2}$ for $T_{p}S$ such that $-dN_{p}(e_1) = k_{1}e_{1}$ and $-dN_{p}(e_2) = k_{2}e_{2}$.
Thus for an arbitrary direction vector described by your $varphi$, call it $v$ can we written as a linear combination of some orthonormal basis ${e_1, e_2}$ with the above properties as $v = e_{1}cosvarphi + e_{2}sinvarphi$.
Now following the definition we get:
begin{align}
k_{n} & = text{II}_{p}(v) = -<dN_{p}(v), v> \
& =-<dN_{p}(e_{1}cosvarphi + e_{2}sinvarphi), e_{1}cosvarphi + e_{2}sinvarphi> \
& =<k_{1}e_{1}cosvarphi+k_{2}e_{2}sinvarphi, e_{2}sinvarphi+ e_{1}cosvarphi> \
& =k_{1}cos^2varphi + k_{2}sin^2varphi \
end{align}
answered May 13 '16 at 4:47
nonenone
103117
103117
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1782829%2fproof-of-eulers-theorem-involving-curvature%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown