Prove that $prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =frac {sqrt {2m+1}}{2^m}$
$begingroup$
Prove that $$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =frac {sqrt {2m+1}}{2^m}$$
My try:
$$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =prod_{r=1}^m left(frac {e^{frac {irpi}{2m+1}} -e^{frac {-irpi}{2m+1}}}{2i}right) =frac {1}{2^mi^m}left(prod_{r=1}^m e^{frac {-irpi}{2m+1}}right) prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$
But I can't get a clue to tackle $$prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$ . I tried to use it's relation with roots of unity but couldn't proceed much.
I also tried writing the $sin$ using Euler's reflection formula that for $zin (0,1)$ $$sin (pi z)=frac {pi}{Gamma(z)Gamma(1-z)}$$ where in our case $z=frac {r}{2m+1}$. But that too didn't last long.
Any help is greatly appreciated. Thanks.
calculus sequences-and-series trigonometry complex-numbers gamma-function
$endgroup$
add a comment |
$begingroup$
Prove that $$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =frac {sqrt {2m+1}}{2^m}$$
My try:
$$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =prod_{r=1}^m left(frac {e^{frac {irpi}{2m+1}} -e^{frac {-irpi}{2m+1}}}{2i}right) =frac {1}{2^mi^m}left(prod_{r=1}^m e^{frac {-irpi}{2m+1}}right) prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$
But I can't get a clue to tackle $$prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$ . I tried to use it's relation with roots of unity but couldn't proceed much.
I also tried writing the $sin$ using Euler's reflection formula that for $zin (0,1)$ $$sin (pi z)=frac {pi}{Gamma(z)Gamma(1-z)}$$ where in our case $z=frac {r}{2m+1}$. But that too didn't last long.
Any help is greatly appreciated. Thanks.
calculus sequences-and-series trigonometry complex-numbers gamma-function
$endgroup$
3
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03
add a comment |
$begingroup$
Prove that $$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =frac {sqrt {2m+1}}{2^m}$$
My try:
$$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =prod_{r=1}^m left(frac {e^{frac {irpi}{2m+1}} -e^{frac {-irpi}{2m+1}}}{2i}right) =frac {1}{2^mi^m}left(prod_{r=1}^m e^{frac {-irpi}{2m+1}}right) prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$
But I can't get a clue to tackle $$prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$ . I tried to use it's relation with roots of unity but couldn't proceed much.
I also tried writing the $sin$ using Euler's reflection formula that for $zin (0,1)$ $$sin (pi z)=frac {pi}{Gamma(z)Gamma(1-z)}$$ where in our case $z=frac {r}{2m+1}$. But that too didn't last long.
Any help is greatly appreciated. Thanks.
calculus sequences-and-series trigonometry complex-numbers gamma-function
$endgroup$
Prove that $$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =frac {sqrt {2m+1}}{2^m}$$
My try:
$$prod_{r=1}^m sin left( frac {rpi}{2m+1}right) =prod_{r=1}^m left(frac {e^{frac {irpi}{2m+1}} -e^{frac {-irpi}{2m+1}}}{2i}right) =frac {1}{2^mi^m}left(prod_{r=1}^m e^{frac {-irpi}{2m+1}}right) prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$
But I can't get a clue to tackle $$prod_{r=1}^m left(e^{frac {2irpi}{2m+1}} -1right)$$ . I tried to use it's relation with roots of unity but couldn't proceed much.
I also tried writing the $sin$ using Euler's reflection formula that for $zin (0,1)$ $$sin (pi z)=frac {pi}{Gamma(z)Gamma(1-z)}$$ where in our case $z=frac {r}{2m+1}$. But that too didn't last long.
Any help is greatly appreciated. Thanks.
calculus sequences-and-series trigonometry complex-numbers gamma-function
calculus sequences-and-series trigonometry complex-numbers gamma-function
asked Dec 8 '18 at 11:55
DarkraiDarkrai
6,4121442
6,4121442
3
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03
add a comment |
3
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03
3
3
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint.
Calling
$$
P = prod_{r=1}^m sin left( frac {rpi}{2m+1}right)
$$ then
$$
P^2 = prod_{r=1}^{2m} sin left( frac {rpi}{2m+1}right)
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031020%2fprove-that-prod-r-1m-sin-left-frac-r-pi2m1-right-frac-sqrt-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint.
Calling
$$
P = prod_{r=1}^m sin left( frac {rpi}{2m+1}right)
$$ then
$$
P^2 = prod_{r=1}^{2m} sin left( frac {rpi}{2m+1}right)
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Calling
$$
P = prod_{r=1}^m sin left( frac {rpi}{2m+1}right)
$$ then
$$
P^2 = prod_{r=1}^{2m} sin left( frac {rpi}{2m+1}right)
$$
$endgroup$
add a comment |
$begingroup$
Hint.
Calling
$$
P = prod_{r=1}^m sin left( frac {rpi}{2m+1}right)
$$ then
$$
P^2 = prod_{r=1}^{2m} sin left( frac {rpi}{2m+1}right)
$$
$endgroup$
Hint.
Calling
$$
P = prod_{r=1}^m sin left( frac {rpi}{2m+1}right)
$$ then
$$
P^2 = prod_{r=1}^{2m} sin left( frac {rpi}{2m+1}right)
$$
answered Dec 8 '18 at 13:28
CesareoCesareo
9,3613517
9,3613517
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3031020%2fprove-that-prod-r-1m-sin-left-frac-r-pi2m1-right-frac-sqrt-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Check out the answer here.
$endgroup$
– MisterRiemann
Dec 8 '18 at 12:03