Solutions in terms of the hypergeometric functions











up vote
1
down vote

favorite
2












Is it possible to somehow express the solutions to the differential equations:
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} - frac{1}{x} + frac{1}{x - 1} + frac{1}{x - 4}bigg) frac{dy}{dx} + bigg(frac{1}{x^2} + frac{3}{4x} - frac{5}{6(x - 1)} - frac{1}{4(x - 4)^2}bigg) y = 0$$
and
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} + frac{1}{3x} + frac{1}{x - 64}bigg) frac{dy}{dx} + bigg(frac{7}{144x^2} - frac{7}{3072x} + frac{7}{3072(x - 64)}bigg) y = 0$$
in terms of the hypergeometric functions?










share|cite|improve this question
























  • It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
    – Kiryl Pesotski
    Jul 31 '17 at 12:04















up vote
1
down vote

favorite
2












Is it possible to somehow express the solutions to the differential equations:
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} - frac{1}{x} + frac{1}{x - 1} + frac{1}{x - 4}bigg) frac{dy}{dx} + bigg(frac{1}{x^2} + frac{3}{4x} - frac{5}{6(x - 1)} - frac{1}{4(x - 4)^2}bigg) y = 0$$
and
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} + frac{1}{3x} + frac{1}{x - 64}bigg) frac{dy}{dx} + bigg(frac{7}{144x^2} - frac{7}{3072x} + frac{7}{3072(x - 64)}bigg) y = 0$$
in terms of the hypergeometric functions?










share|cite|improve this question
























  • It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
    – Kiryl Pesotski
    Jul 31 '17 at 12:04













up vote
1
down vote

favorite
2









up vote
1
down vote

favorite
2






2





Is it possible to somehow express the solutions to the differential equations:
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} - frac{1}{x} + frac{1}{x - 1} + frac{1}{x - 4}bigg) frac{dy}{dx} + bigg(frac{1}{x^2} + frac{3}{4x} - frac{5}{6(x - 1)} - frac{1}{4(x - 4)^2}bigg) y = 0$$
and
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} + frac{1}{3x} + frac{1}{x - 64}bigg) frac{dy}{dx} + bigg(frac{7}{144x^2} - frac{7}{3072x} + frac{7}{3072(x - 64)}bigg) y = 0$$
in terms of the hypergeometric functions?










share|cite|improve this question















Is it possible to somehow express the solutions to the differential equations:
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} - frac{1}{x} + frac{1}{x - 1} + frac{1}{x - 4}bigg) frac{dy}{dx} + bigg(frac{1}{x^2} + frac{3}{4x} - frac{5}{6(x - 1)} - frac{1}{4(x - 4)^2}bigg) y = 0$$
and
$$frac{d^2y}{dx^2} + bigg(frac{1}{x + 8} + frac{1}{3x} + frac{1}{x - 64}bigg) frac{dy}{dx} + bigg(frac{7}{144x^2} - frac{7}{3072x} + frac{7}{3072(x - 64)}bigg) y = 0$$
in terms of the hypergeometric functions?







complex-analysis differential-equations power-series special-functions hypergeometric-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jul 31 '17 at 6:12









J. M. is not a mathematician

60.6k5146284




60.6k5146284










asked Jul 31 '17 at 4:31









glebovg

6,99822047




6,99822047












  • It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
    – Kiryl Pesotski
    Jul 31 '17 at 12:04


















  • It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
    – Kiryl Pesotski
    Jul 31 '17 at 12:04
















It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
– Kiryl Pesotski
Jul 31 '17 at 12:04




It looks like a good idea to try to convert those equations into the Riemann's ODE. en.wikipedia.org/wiki/Riemann%27s_differential_equation
– Kiryl Pesotski
Jul 31 '17 at 12:04










5 Answers
5






active

oldest

votes

















up vote
2
down vote













Hint:



For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{dy}{dx}+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)y=0$ ,



Let $y=x^au$ ,



Then $dfrac{dy}{dx}=x^adfrac{du}{dx}+ax^{a-1}u$



$dfrac{d^2y}{dx^2}=x^adfrac{d^2u}{dx^2}+ax^{a-1}dfrac{du}{dx}+ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u=x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u$



$therefore x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)left(x^adfrac{du}{dx}+ax^{a-1}uright)+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)x^au=0$



$dfrac{d^2u}{dx^2}+dfrac{2a}{x}dfrac{du}{dx}+dfrac{a(a-1)}{x^2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}+dfrac{a}{3x^2}+dfrac{a}{x(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



$dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a(3a-2)}{3x^2}+dfrac{a}{8x}-dfrac{a}{8(x+8)}-dfrac{a}{64x}+dfrac{a}{64(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



$dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{48a(3a-2)+7}{144x^2}+dfrac{7(48a-1)}{3072x}-dfrac{a}{8(x+8)}+dfrac{48a+7}{3072(x-64)}right)u=0$



Choose $a=dfrac{1}{12}$ , the ODE becomes



$dfrac{d^2u}{dx^2}+left(dfrac{1}{2x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{7}{1024x}-dfrac{1}{96(x+8)}+dfrac{11}{3072(x-64)}right)u=0$



In fact according to http://www.wolframalpha.com/input/?i=y%27%27%2B(1%2F(x%2B8)%2B1%2F(3x)%2B1%2F(x-64))y%27%2B(7%2F(144x%5E2)-7%2F(3072x)%2B7%2F(3072(x-64)))y%3D0, it is possible to simplify to hypergeometric ODE luckily.



For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{dy}{dx}+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)y=0$ ,



Let $y=x^a(x-4)^bu$ ,



Then $dfrac{dy}{dx}=x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)u$



$dfrac{d^2y}{dx^2}=x^a(x-4)^bdfrac{d^2u}{dx^2}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u=x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u$



$therefore x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)left(x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)uright)+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)x^a(x-4)^bu=0$



$dfrac{d^2u}{dx^2}+left(dfrac{2a}{x}+dfrac{2b}{x-4}right)dfrac{du}{dx}+left(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}-dfrac{a}{x^2}+dfrac{a}{x(x-1)}+dfrac{a}{x(x-4)}+dfrac{b}{(x-4)(x+8)}-dfrac{b}{x(x-4)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)^2}right)u+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)u=0$



$dfrac{d^2u}{dx^2}+left(dfrac{2a-1}{x}+dfrac{1}{x-1}+dfrac{2b+1}{x-4}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{a(a-2)+1}{x^2}+dfrac{3}{4x}+dfrac{a}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{2ab+a-b}{x(x-4)}+dfrac{a}{x(x+8)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)(x+8)}+dfrac{4b^2-1}{4(x-4)^2}right)u=0$



Choose $a=1$ and $b=-dfrac{1}{2}$ , the ODE becomes



$dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{3}{4x}+dfrac{1}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{1}{2x(x-4)}+dfrac{1}{x(x+8)}-dfrac{1}{2(x-1)(x-4)}-dfrac{1}{2(x-4)(x+8)}right)u=0$



$dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$






share|cite|improve this answer























  • I do not understand your hint. What is $a$ supposed to be?
    – glebovg
    Aug 5 '17 at 0:20




















up vote
1
down vote













Let us focus on the second ODE since at the first glance it has three regular singular points and as such it should be possible to map it onto the hyper-geometric equation which too has three singular points. For 2nd order ODEs we always reduce it to the normal form, i.e. such that has no coefficient at the first derivative. This is done by writing $y(x)=m(x) cdot v(x)$ where $m(x):=exp(-1/2 int a_1(x) dx)$and $a_1(x)$ is the coeffcient at the 1st derivative. In our case:
begin{equation}
a_1(x)=frac{1}{x+8} + frac{1}{3 x} + frac{1}{x-64}
end{equation}

therefore $m(x)=(x+8)^{-1/2} x^{-1/6} (x-64)^{-1/2}$ and the function $v(x)$ satisfies the following ODE:
begin{equation}
v^{''}(x) + frac{48(1024+112 x+25 x^2)}{(-64+x)^2 x^2 (8+x)^2} v(x)=0 quad (I)
end{equation}



Now what we want to do is to relate the ODE above to the appropriately transformed hypergeometric ODE.
begin{equation}
x(1-x) Y^{''}(x) + (c-(a+b+1)x)Y^{'}(x)-a b Y(x)=0
end{equation}

We will start from that ODE and carry out two transformations. Let us take the Moebius function $f(x):=(A x+B)/(C x+D)$ and firstly change the abscissa $x rightarrow f(x)$ and $d/dx rightarrow 1/f^{'}(x) d/d x$ and then reduce the equation to the normal form by writing
begin{equation}
Y(x):= (A x+B)^{-c/2} (B-D+(A-C) x)^{-(1+a+b-c)/2} (D+C x)^{(-1+a+b)/2}cdot V(x)
end{equation}

Having done this we obtain the following ODE for the function $V(x)$. We have:
begin{eqnarray}
V^{''}(x)- frac{(B C-A D)^2}{4} cdot frac{{mathfrak A_0}+{mathfrak A_1} x+{mathfrak A_2} x^2}{(B+A x)^2 (B-D+(A-C) x)^2 (D+C x)^2} cdot V(x)=0 quad(II)
end{eqnarray}

where:
begin{eqnarray}
{mathfrak A_0}&:=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
{mathfrak A_1}&:=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)D))right)\
{mathfrak A}_2&:=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
end{eqnarray}



Note that ODE $(I)$ has exactly the same form as $(II)$. All we need to do is to adjust the parameters accordingly to map the later to the former. Firstly we find the upper case letters by matching the zeros of the denominator. Choosing
begin{eqnarray}
B&=&-64 A\
C&=&-8 A\
D&=&-64 A
end{eqnarray}

does the job.
Now comes the toughest part meaning choosing the lower case parameters to match the numerators in ODEs $(I)$ and $(II)$. We have:
begin{eqnarray}
{mathfrak A_0}=-16 left(4096 a^2+8192 a b-8192 a c+4096 b^2-8192 b c+4096 c^2-4096right)=48 times 1024\
{mathfrak A_1}=-16 left(-128 a^2+2048 a b-896 a c-128 b^2-896 b c+1024 c^2-1152
c+128right)=48 times 112\
{mathfrak A_2}=-16 left(a^2-34 a b+16 a c+b^2+16 b c+64 c^2-144 c-1right)=48 times 25
end{eqnarray}

These are just quadratic equations so they can be solved. In fact there are two sets of solutions:
begin{eqnarray}
(a,b,c)&=&(frac{1}{4},frac{1}{4},1)\
(a,b,c)&=&(frac{3}{4},frac{3}{4},1)
end{eqnarray}

Now we have completed the job. We made sure that $v(x)=V(x)$. All we have to do is to bring everything together and simplify. We have:
begin{eqnarray}
y(x)=C_1 x^{frac{1}{12}} (8+x)^{-frac{1}{4}} F_{2,1}left[1/4,1/4,1;frac{x-64}{-8 x-64}right] + C_2 x^{frac{7}{12}} (8+x)^{-frac{3}{4}} F_{2,1}left[3/4,3/4,1;frac{x-64}{-8 x-64}right]
end{eqnarray}

The final step is to verify the result using a Computer Algebra System. We have:



In[295]:= 
FullSimplify[(D[#, {x, 2}] + (1/(x + 8) + 1/(3 x) + 1/(x - 64)) D[#,
x] + (7/(144 x^2) - 7/(3072 x) +
7/(3072 (x - 64))) #) & /@ { (x)^(1/(12)) ( (8 + x))^(-1/4)
Hypergeometric2F1[1/4, 1/4, 1, (x - 64)/(-8 x - 64)], ((x)^(
7/(12)))/((8 + x))^(3/4)
Hypergeometric2F1[3/4, 3/4, 1, (x - 64)/(-8 x - 64)]}]

Out[295]= {0, 0}





share|cite|improve this answer























  • The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
    – eyeballfrog
    Oct 19 at 11:15










  • @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
    – Przemo
    Oct 22 at 11:30




















up vote
1
down vote













Now let us turn attention to the first ODE.



Here we start from the hypergeometric ODE
begin{eqnarray}
y^{''}(x) + left( frac{c}{x} + frac{a+b-c+1}{x-1} right) y^{'}(x) + frac{a b}{x(x-1)} y(x)=0
end{eqnarray}



and we change the abscissa $x rightarrow f(x)$ and after that the ordinate $y(x) = m(x) v(x)$. After some straightforward calculations we end up with the following ODE:
begin{eqnarray}
v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
end{eqnarray}

where:
begin{eqnarray}
a_0(x)&:=&frac{m''(x)}{m(x)}+frac{a b f'(x)^2}{(f(x)-1) f(x)} +frac{m'(x)}{m(x)}left(frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
a_1(x)&:=&frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
end{eqnarray}



Now we match the coefficients at the first derivative and solve for the function $m(x)$. Note that since $a_1(x)$ depends only on the first derivative of the function $m(x)$ we can always formally solve the resulting ODE. The solution reads:
begin{eqnarray}
m(x)&=& frac{sqrt{(x-4) (x-1) (x+8)} f(x)^{-c/2} sqrt{f'(x)} (1-f(x))^{frac{1}{2} (-a-b+c-1)}}{sqrt{x}} quad (II)
end{eqnarray}

Now all we need to do is to insert the above into the definition of $a_0(x)$ then equate the result to the coefficient at the zeroth derivative and solve for $f(x)$. This is easier said than done because the resulting differential equation is highly nonlinear.However what we can do is to assume that $f(x)$ has a particular functional form-- in this case it is a rational function and then adjust the parameters of that function such that the relevant coefficients match. This is again easier said than done because the resulting expressions quickly become unwieldy if only the degrees of the numerator and denominator get bigger than one. Therefore for the time being we only consider the old good Moebius function $f(x)=(A x+B)/(C x+D)$.
If we insert this along with $(II)$ into $(Ia)$ we end up with a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $(x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$ and $((A-C)x+(B-D))^2$.
Now there are only three ways for the relevant denominators to match.
begin{eqnarray}
left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} end{array}right) =
left{
left( begin{array}{r} 0\ -1 \ -4 end{array}right),
left( begin{array}{r} 0\ -1 \ +8 end{array}right),
left( begin{array}{r} 0\ -4 \ +8 end{array}right),
left( begin{array}{r} -1\ -4 \ +8 end{array}right)
right}
end{eqnarray}

This leads to following solutions for the function $f(x)$. We have:



begin{eqnarray}
f(x)=left{
frac{3/4 x}{-1/4 x+1},
frac{9/8 x}{1/8 x+1},
frac{3/8 x}{1/8 x+1},
frac{1/2 x-1/2}{1/8 x+1}
right} quad (III)
end{eqnarray}

Now inserting $(III)$ along with $(II)$ into $(Ia)$ and $(Ib)$ we get:
begin{eqnarray}
v(x)&=&frac{1}{m(x)} left(
C_1 F_{2,1}[a,b,c,f(x)] + C_2 f[x]^{1-c} F_{2,1}[a+1-c,b+1-c,2-c,f(x)]
right)
end{eqnarray}

where
begin{eqnarray}
a_1(x)&=&frac{1}{x-1}-frac{1}{x}+frac{1}{x+8}+frac{1}{x-4}
end{eqnarray}

and
begin{eqnarray}
a_0(x)&=&frac{-3 a^2+18 a b-6 a c-3 b^2-6 b c+9 c^2-12 c-8}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{4 a^2-6 a b-a c+4 b^2-b c+c-2}{24 (x-4)}+frac{-a^2+2 a b-b^2}{4 (x-4)^2}+frac{-12 a b+6 a c+6 b c-8
c^2+10 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{5}{144 (x+8)}-frac{1}{4 (x+8)^2}\
a_0(x)&=&frac{a^2+18 a b-10 a c+b^2-10 b c+9 c^2-8 c-12}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{-8 a^2+18 a b-a c-8 b^2-b c+c+3}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-18 a b+9 a c+9 b c-8
c^2+7 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}+frac{1}{12 (x-4)}-frac{1}{4 (x-4)^2}\
a_0(x)&=&frac{a^2+6 a b-4 a c+b^2-4 b c+3 c^2-2 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+18 a b-3 a c-6 b^2-3 b c+3 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-6 a b+3 a c+3 b c-2
c^2+c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{11}{18 (x-1)}-frac{1}{4 (x-1)^2}\
a_0(x)&=&frac{a^2+8 a b-5 a c+b^2-5 b c+4 c^2-3 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+16 a b-2 a c-6 b^2-2 b c+2 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-8 a b+4 a c+4 b c-3
c^2+2 c-11}{18 (x-1)}+frac{-c^2+2 c-1}{4 (x-1)^2}+frac{3}{4 x^2}+frac{9}{16 x}
end{eqnarray}

The nonbelievers can run the code below to make sure it is correct:



Clear[m]; Clear[f]; Clear[a1]; Clear[a0]; a =.; b =.; c =.; x =.;
m[x_] = Sqrt[(-4 + x) (-1 + x) (8 + x)]/
Sqrt[x] (1 - f[x])^((-1 - a - b + c)/2) f[x]^(-c/2) Sqrt[f'[x]];
f[x_] = (3/4 x)/(-1/4 x + 1);(*(0,-1,-4)*)
f[x_] = (9/8 x)/(1/8 x + 1);(*(0,-1,+8)*)
f[x_] = (3/8 x)/(1/8 x + 1);(*(0,-4,+8)*)
f[x_] = (1/2 x - 1/2)/(1/8 x + 1);(*(-1,-4,+8)*)


a0[x_] = (
a b Derivative[1][f][x]^2)/((-1 + f[x]) f[x]) + -((
Derivative[1][m][
x] (c Derivative[1][f][x]^2 - f[x] Derivative[1][f][x]^2 -
a f[x] Derivative[1][f][x]^2 - b f[x] Derivative[1][f][x]^2 -
f[x] (f^[Prime][Prime])[x] +
f[x]^2 (f^[Prime][Prime])[x]))/(
m[x] (-1 + f[x]) f[x] Derivative[1][f][x])) + (
m^[Prime][Prime])[x]/ m[x];
a1[x_] = ((1 + a + b - c) Derivative[1][f][x])/(-1 + f[x]) + (
c Derivative[1][f][x])/ f[x] + (2 Derivative[1][m][x])/
m[x] - (f^[Prime][Prime])[x]/ Derivative[1][f][x];

(Apart[Together[{a1[x], a0[x]}], x])
FullSimplify[(D[#, {x, 2}] + a1[x] D[#, {x, 1}] + a0[x] #) & /@ {1/
m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c,
f[x]])}]


enter image description here



At the first glance it seems that it is not possible to match the coefficient $a_0(x)$ against that in our original ODE. The later simply contains not enough factors; for example it misses the very important factors $1/(x+8)$ and $1/(x+8)^2$.
Therefore the lesson from this exercise is the following. In general as the complexity of our original ODE grows it will become harder and harder to match it against solutions of some known ODEs -- in this case the hypergeometric function. However we can always produce a whole family of ODEs which are close to the original one and whose solutions are known. This is what we have accomplished in here.






share|cite|improve this answer






























    up vote
    1
    down vote













    Now again we focus our attention on the first ODE. We will follow the same line of attack as in my previous answer above except that now we start from the Heun ODE rather than from the hypergeometric one. We have:
    begin{eqnarray}
    y^{''}(x) + left( frac{c}{x} + frac{d}{x-1} + frac{a+b-c-d+1}{x-x_0} right) y^{'}(x) + frac{a b x - q}{x(x-1)(x-x_0)} y(x)=0
    end{eqnarray}



    We change the abscissa $x→f(x)$ and after that the ordinate $y(x)=m(x)v(x)$. After some straightforward calculations we end up with the following ODE:
    begin{eqnarray}
    v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
    end{eqnarray}

    where:
    begin{eqnarray}
    a_0(x)&:=&frac{m''(x)}{m(x)}+
    frac{(a b f(x)-q) f'(x)^2}{(f(x)-1) f(x) (f(x)-x_0)} +
    frac{m'(x)}{m(x)}left(frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
    a_1(x)&:=&frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
    end{eqnarray}



    Now we match the coefficient at the first derivative meaing we solve the equation $a_1(x)= 1/(x-4) + 1/(x-1)-1/x+1/(x+8)$. This is a first order ODE with respect to $m(x)$ and it can always be solved since all terms in $a_1(x)$ are total derivatives. We have:
    begin{equation}
    m(x)=sqrt{frac{(x-4) (x-1) (x+8)}{x}} (1-f(x))^{-d/2} f(x)^{-c/2} sqrt{f'(x)} (x_0-f(x))^{frac{1}{2} (-a-b+d+c-1)}
    end{equation}

    We insert the above into equation $(Ia)$ and then take our old good Moebius function $f(x):=(A x+B)/(C x+D)$. Again it is not difficult to see that $a_0(x)$ is now a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$, $((A-C)x+(B-D))^2$ and $((A-C x_0) x + (B-D x_0))^2$. Now in order to match the denominators in the coefficient in question we need to solve a following system of linear equations:
    begin{eqnarray}
    left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
    left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right)
    end{eqnarray}

    which gives $(A,B,C,D,x_0)=(-3 C,0,C,-4 C,-2)$ and
    begin{eqnarray}
    a_0(x)&=&frac{a^2+2 c (a+b)-8 a b+3 a d+b^2+3 b d-3 d-2 c+2 q+1}{24 (x-4)}+frac{-6 a^2+a (-16 b+14 d+15 c)-(6 b-8 d-9 c) (b-d-c)+2 d+3 c-2 q+1}{144 (x+8)}+frac{a (8 b-4 d)+d (-4 b+d-8 c+2)-8 q-11}{18 (x-1)}+frac{c (-3 a-3 b+9
    d+c+1)+6 q+9}{16 x}-frac{(a+b-d-c)^2}{4 (x+8)^2}-frac{(a-b)^2}{4 (x-4)^2}-frac{(d-1)^2}{4 (x-1)^2}-frac{(c-3) (c+1)}{4 x^2}\
    a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
    end{eqnarray}

    All what we need to do now is to annihilate the coefficients at $1/(x+8)$, $1/(x+8)^2$, $1/(x-1)^2$ and $1/(x-4)$. Since there is five parameters $a$,$b$,$c$,$d$,$q$ and four constraints we expect to obtain one free parameter. This is indeed the case since the solution reads:
    begin{eqnarray}
    a&=&frac{1}{3}left(-1+4 b + sqrt{1-14 b+7 b^2} right)\
    c&=&frac{1}{3} left(-4+7 b+ sqrt{1-14 b+7 b^2} right)\
    d&=&1\
    q&=& frac{1}{6} left(-3+25 b-16 b^2+(3-4 b) sqrt{1-14 b+7 b^2}right)
    end{eqnarray}

    and
    begin{eqnarray}
    a_0(x)&=&-frac{7}{18} frac{Delta}{x^2}-frac{4}{9} frac{Delta}{x} + frac{4}{9} frac{Delta}{x-1} - frac{1}{18} frac{Delta}{(x-4)^2}\
    a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
    end{eqnarray}

    where
    begin{equation}
    Delta := 1-8 b + 4 b^2+(b-1) sqrt{1+7(-2+b)b}
    end{equation}



    As usual I enclose a Mathematica code snippet that anyone can use to make sure that there no error in the equations above.



    In[1]:= a =.; b =.; g =.; d =.; q =.; x0 =.; x =.; Clear[m]; 
    Clear[v]; Clear[y];
    a = 1/3 (-1 + 4 b + Sqrt[1 - 14 b + 7 b^2]); g =
    1/3 (-4 + 7 b + Sqrt[1 - 14 b + 7 b^2]); d = 1; q =
    1/6 (-3 + 25 b - 16 b^2 + (3 - 4 b) Sqrt[1 - 14 b + 7 b^2]); x0 = -2;
    f[x_] = (-3 x)/(x - 4);
    m[x_] = Sqrt[((-4 + x) (-1 + x) (8 + x))/x] f[x]^(-g/2) Sqrt[
    f'[x]] (1 - f[x])^(-d/2) (x0 - f[x])^(1/2 (-a - b + d + g - 1));

    Clear[a0]; Clear[a1];
    Delta = (1 - Sqrt[1 + 7 (-2 + b) b] +
    b (-8 + 4 b + Sqrt[1 + 7 (-2 + b) b]));
    a0[x_] = -((7 Delta)/(18 x^2)) - (4 Delta)/(9 x) + (4 Delta)/(
    9 (-1 + x)) - Delta/(18 (-4 + x)^2);
    a1[x_] = 1/(-4 + x) + 1/(-1 + x) - 1/x + 1/(8 + x);

    myeqn = (D[
    y[x], {x,
    2}] + (g/x + d/(x - 1) + (a + b - g - d + 1)/(x - x0)) D[y[x],
    x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
    subst = {x :> f[x],
    Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
    Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
    1/(f'[x])^2 Derivative[2][y][x]};
    myeqn = Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x],
    y''[x]}, Simplify];
    y[x_] = m[x] v[x];
    FullSimplify[myeqn /. Derivative[2][v][x] :> -a1[x] v'[x] - a0[x] v[x]]


    Out[13]= 0


    The final conclusion of all this is that the Heun ODE can indeed be mapped onto the ODE in question(here I mean that the number of terms and their orders in each coefficient do match but the coefficients at those terms not necessarily match). As a matter of fact we even obtain a whole one parameter family of ODEs with known solutions. Unfortunately however the very particular ODE in question does not belong to this family.






    share|cite|improve this answer





















    • How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
      – doraemonpaul
      Nov 17 at 12:49










    • @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
      – Przemo
      Nov 19 at 18:46


















    up vote
    1
    down vote













    This is an answer to the comment posted by doraemonpaul . The question is to find solutions and possibly outline differences in finding those solutions to the first ODE above. The new ODE reads:
    begin{eqnarray}
    frac{d^2 v(x)}{d x^2} +underbrace{left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right)}_{a_1(x)} frac{d v(x)}{d x} - left( frac{1}{4 x} - frac{1}{3(x-1)} + frac{1}{12(x-4)} + frac{1}{12(x+8)}right)v(x)=0
    end{eqnarray}

    In here we start from the Heun ODE and as usual we change the dependent variable $xrightarrow f(x)$ and then the independent variable $y(x)=m(x) v(x)$ and then we choose the function $m(x)$ so that the coefficients at the first derivative match. This gives:
    begin{equation}
    m(x)=sqrt{x(x-1)(x+8)} (1-f(x))^{-d/2} f[x]^{-c/2} sqrt{f^{'}(x)} (x_0-f(x))^{1/2(-a-b+c+d-1)}
    end{equation}

    and
    begin{eqnarray}
    &&frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(right.\
    &&left. frac{f'(x)^2 left(-a^2-2 a (b-c-d)-b^2+2 b (c+d)-c^2-2 c d-d^2+1right)}{4 (x_0-f(x))^2}right.+\
    &&frac{f'(x)^2 left(c (a (x_0-1)+b (x_0-1)-2 d x_0+d+x_0-1)+x_0 (a (d-2 b)+d (b-d+1))+c^2 (-(x_0-1))+2 qright)}{2 (x_0-1) x_0 (x_0-f(x))}+\
    &&frac{(2-d) d f'(x)^2}{4 (f(x)-1)^2}+\
    &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
    &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
    &&frac{f'(x)^2 left(c (a+b+d x_0-d+1)-c^2-2 qright)}{2 x_0 f(x)}+\
    &&frac{1}{4} left(2 a_1'(x)+a_1(x)^2+underbrace{frac{2 f^{(3)}(x) f'(x)-3 f''(x)^2}{f'(x)^2}}_{mbox{Schwarzian derivative}}right)\
    &&left.right)v(x)=0
    end{eqnarray}

    Now we take the good old Moebius function $f(x)=(A x+B)/(C x+D)$ (note that this anihilates the Schwarzian derivative in the last term in parentheses above) and we choose the upper case constants in the usual way i.e. via
    begin{eqnarray}
    left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
    left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right) odot pi
    end{eqnarray}

    where $pi$ is a permutation of length four. Having done this we decompose into partial fractions the coefficient at the zeroth derivative and then we anihilate the terms being proportional to second powers. This gives us four equations with five unknowns so we expect to get one free parameter. This is indeed the case. One of the twenty four cases reads:
    begin{eqnarray}
    frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(frac{11-24 q}{18 (x-1)}+frac{6 q-frac{3}{2}}{24 (x-4)}+frac{18 q-8}{16 x}+frac{-6 q-7}{144 (x+8)}right) v(x)=0
    end{eqnarray}

    where
    begin{eqnarray}
    v(x)=frac{1}{m(x)} left(
    C_1 cdot Hnleft(
    begin{array}{r|rr|}
    x_0 & a & b \
    q & c & d
    end{array}
    f(x)
    right) +
    C_2 cdot [f(x)]^{1-c} Hnleft(
    begin{array}{r|rr|}
    x_0 & a+1-c & b+1-c \
    q_1 & 2-c & d
    end{array}
    f(x)
    right)
    right)
    end{eqnarray}

    where $q_1=q-(c-1)(a+b-c-d+d x_0 +1)$
    and $(a,b,c,d,q)=(1/2,1/2,1,0,q)$ and $x_0=2/3$ and $f(x)=(3 x)/(4(x-1))$.



    A =.; B =.; CC =.; DD =.; x0 =.;
    a =.; b =.; c =.; d =.; q =.;
    A1[x_] = 1/x + 1/(x - 1) + 1/(x + 8);

    perm = Permutations[{1, 2, 3, 4}];
    sol = Table[{A, B, CC, DD, x0} /.
    Solve[{B/A,
    DD/CC, (B - DD)/(A - CC), (B - DD x0)/(A -
    CC x0)} == {0, -1, -4, 8}[[perm[[j]]]]], {j, 1, 24}];
    MatrixForm[sol]; myList = {};
    Do[
    A =.; B =.; CC =.; DD =.; x0 =.;
    a =.; b =.; c =.; d =.; q =.;
    {A, B, CC, DD, x0} = First[sol[[which]]];
    f[x_] = Simplify[(A x + B)/(CC x + DD)];
    m[x_] = Sqrt[x (x - 1) (x + 8)] (1 - f[x])^(-d/2) f[x]^(-c/2) Sqrt[
    f'[x]] (x0 - f[x])^(1/2 (-a - b + d + c - 1));
    A0[x_] =
    Apart[Together[-(-1 + a^2 + b^2 + c^2 + 2 a (b - c - d) + 2 c d +
    d^2 - 2 b (c + d)) (Derivative[1][f][x]^2)/(
    4 (x0 - f[x])^2) + (2 q -
    c^2 (-1 + x0) + ((1 + b - d) d + a (-2 b + d)) x0 +
    c (-1 + d + a (-1 + x0) + b (-1 + x0) + x0 - 2 d x0)) (
    Derivative[1][f][x]^2)/(
    2 (-1 + x0) x0 (x0 - f[x])) - (-2 + d) d Derivative[1][f][x]^2/(
    4 (-1 + f[x])^2) + (-d^2 + a (-2 b + d) + 2 q +
    d (1 + b - c x0)) (Derivative[1][f][x]^2)/(
    2 (-1 + x0) (-1 + f[x])) - (-2 + c) c (Derivative[1][f][x]^2)/(
    4 f[x]^2) + (-c^2 - 2 q + c (1 + a + b - d + d x0)) (
    Derivative[1][f][x]^2)/(2 x0 f[x]) +
    1/4 (A1[x]^2 +
    2 Derivative[1][A1][x] + (-3 (f^[Prime][Prime])[x]^2 +
    2 Derivative[1][f][x]
    !(*SuperscriptBox[(f),
    TagBox[
    RowBox[{"(", "3", ")"}],
    Derivative],
    MultilineFunction->None])[x])/Derivative[1][f][x]^2)], x];
    eX = A0[x];
    subst = {a, b, c, d} /.
    Solve[{Coefficient[eX, x, -2], Coefficient[eX, 1/(x - 1)^2],
    Coefficient[eX, 1/(x - 4)^2],
    Coefficient[eX, 1/(x + 8)^2]} == {0, 0, 0, 0}];
    {a, b, c, d} = subst[[1]];
    Clear[v]; Clear[y];
    myeqn = (D[
    y[x], {x,
    2}] + (c/x + d/(x - 1) + (a + b - c - d + 1)/(x - x0)) D[y[x],
    x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
    subst = {x :> f[x],
    Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
    Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
    1/(f'[x])^2 Derivative[2][y][x]};
    myeqn =
    Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x], y''[x]},
    Simplify];
    y[x_] = m[x] v[x];
    eX = FullSimplify[
    myeqn /. Derivative[2][v][x] :> -A1[x] v'[x] - A0[x] v[x]];
    myList = Join[myList, {{f[x], x0}}];
    Print[{eX, A0[x], {a, b, c, d, q}, x0, f[x]}];
    , {which, 1, 24}]


    enter image description here



    To summarize this ODE is indeed different from the first one on top of this webpage in that in here we obtained twenty four different exactly solvable cases whereas in the other case all the twenty four cases turn out to be the same.






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2377289%2fsolutions-in-terms-of-the-hypergeometric-functions%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      5 Answers
      5






      active

      oldest

      votes








      5 Answers
      5






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote













      Hint:



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{dy}{dx}+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)y=0$ ,



      Let $y=x^au$ ,



      Then $dfrac{dy}{dx}=x^adfrac{du}{dx}+ax^{a-1}u$



      $dfrac{d^2y}{dx^2}=x^adfrac{d^2u}{dx^2}+ax^{a-1}dfrac{du}{dx}+ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u=x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u$



      $therefore x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)left(x^adfrac{du}{dx}+ax^{a-1}uright)+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)x^au=0$



      $dfrac{d^2u}{dx^2}+dfrac{2a}{x}dfrac{du}{dx}+dfrac{a(a-1)}{x^2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}+dfrac{a}{3x^2}+dfrac{a}{x(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a(3a-2)}{3x^2}+dfrac{a}{8x}-dfrac{a}{8(x+8)}-dfrac{a}{64x}+dfrac{a}{64(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{48a(3a-2)+7}{144x^2}+dfrac{7(48a-1)}{3072x}-dfrac{a}{8(x+8)}+dfrac{48a+7}{3072(x-64)}right)u=0$



      Choose $a=dfrac{1}{12}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{2x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{7}{1024x}-dfrac{1}{96(x+8)}+dfrac{11}{3072(x-64)}right)u=0$



      In fact according to http://www.wolframalpha.com/input/?i=y%27%27%2B(1%2F(x%2B8)%2B1%2F(3x)%2B1%2F(x-64))y%27%2B(7%2F(144x%5E2)-7%2F(3072x)%2B7%2F(3072(x-64)))y%3D0, it is possible to simplify to hypergeometric ODE luckily.



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{dy}{dx}+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)y=0$ ,



      Let $y=x^a(x-4)^bu$ ,



      Then $dfrac{dy}{dx}=x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)u$



      $dfrac{d^2y}{dx^2}=x^a(x-4)^bdfrac{d^2u}{dx^2}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u=x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u$



      $therefore x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)left(x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)uright)+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)x^a(x-4)^bu=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a}{x}+dfrac{2b}{x-4}right)dfrac{du}{dx}+left(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}-dfrac{a}{x^2}+dfrac{a}{x(x-1)}+dfrac{a}{x(x-4)}+dfrac{b}{(x-4)(x+8)}-dfrac{b}{x(x-4)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)^2}right)u+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a-1}{x}+dfrac{1}{x-1}+dfrac{2b+1}{x-4}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{a(a-2)+1}{x^2}+dfrac{3}{4x}+dfrac{a}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{2ab+a-b}{x(x-4)}+dfrac{a}{x(x+8)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)(x+8)}+dfrac{4b^2-1}{4(x-4)^2}right)u=0$



      Choose $a=1$ and $b=-dfrac{1}{2}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{3}{4x}+dfrac{1}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{1}{2x(x-4)}+dfrac{1}{x(x+8)}-dfrac{1}{2(x-1)(x-4)}-dfrac{1}{2(x-4)(x+8)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$






      share|cite|improve this answer























      • I do not understand your hint. What is $a$ supposed to be?
        – glebovg
        Aug 5 '17 at 0:20

















      up vote
      2
      down vote













      Hint:



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{dy}{dx}+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)y=0$ ,



      Let $y=x^au$ ,



      Then $dfrac{dy}{dx}=x^adfrac{du}{dx}+ax^{a-1}u$



      $dfrac{d^2y}{dx^2}=x^adfrac{d^2u}{dx^2}+ax^{a-1}dfrac{du}{dx}+ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u=x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u$



      $therefore x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)left(x^adfrac{du}{dx}+ax^{a-1}uright)+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)x^au=0$



      $dfrac{d^2u}{dx^2}+dfrac{2a}{x}dfrac{du}{dx}+dfrac{a(a-1)}{x^2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}+dfrac{a}{3x^2}+dfrac{a}{x(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a(3a-2)}{3x^2}+dfrac{a}{8x}-dfrac{a}{8(x+8)}-dfrac{a}{64x}+dfrac{a}{64(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{48a(3a-2)+7}{144x^2}+dfrac{7(48a-1)}{3072x}-dfrac{a}{8(x+8)}+dfrac{48a+7}{3072(x-64)}right)u=0$



      Choose $a=dfrac{1}{12}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{2x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{7}{1024x}-dfrac{1}{96(x+8)}+dfrac{11}{3072(x-64)}right)u=0$



      In fact according to http://www.wolframalpha.com/input/?i=y%27%27%2B(1%2F(x%2B8)%2B1%2F(3x)%2B1%2F(x-64))y%27%2B(7%2F(144x%5E2)-7%2F(3072x)%2B7%2F(3072(x-64)))y%3D0, it is possible to simplify to hypergeometric ODE luckily.



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{dy}{dx}+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)y=0$ ,



      Let $y=x^a(x-4)^bu$ ,



      Then $dfrac{dy}{dx}=x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)u$



      $dfrac{d^2y}{dx^2}=x^a(x-4)^bdfrac{d^2u}{dx^2}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u=x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u$



      $therefore x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)left(x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)uright)+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)x^a(x-4)^bu=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a}{x}+dfrac{2b}{x-4}right)dfrac{du}{dx}+left(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}-dfrac{a}{x^2}+dfrac{a}{x(x-1)}+dfrac{a}{x(x-4)}+dfrac{b}{(x-4)(x+8)}-dfrac{b}{x(x-4)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)^2}right)u+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a-1}{x}+dfrac{1}{x-1}+dfrac{2b+1}{x-4}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{a(a-2)+1}{x^2}+dfrac{3}{4x}+dfrac{a}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{2ab+a-b}{x(x-4)}+dfrac{a}{x(x+8)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)(x+8)}+dfrac{4b^2-1}{4(x-4)^2}right)u=0$



      Choose $a=1$ and $b=-dfrac{1}{2}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{3}{4x}+dfrac{1}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{1}{2x(x-4)}+dfrac{1}{x(x+8)}-dfrac{1}{2(x-1)(x-4)}-dfrac{1}{2(x-4)(x+8)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$






      share|cite|improve this answer























      • I do not understand your hint. What is $a$ supposed to be?
        – glebovg
        Aug 5 '17 at 0:20















      up vote
      2
      down vote










      up vote
      2
      down vote









      Hint:



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{dy}{dx}+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)y=0$ ,



      Let $y=x^au$ ,



      Then $dfrac{dy}{dx}=x^adfrac{du}{dx}+ax^{a-1}u$



      $dfrac{d^2y}{dx^2}=x^adfrac{d^2u}{dx^2}+ax^{a-1}dfrac{du}{dx}+ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u=x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u$



      $therefore x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)left(x^adfrac{du}{dx}+ax^{a-1}uright)+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)x^au=0$



      $dfrac{d^2u}{dx^2}+dfrac{2a}{x}dfrac{du}{dx}+dfrac{a(a-1)}{x^2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}+dfrac{a}{3x^2}+dfrac{a}{x(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a(3a-2)}{3x^2}+dfrac{a}{8x}-dfrac{a}{8(x+8)}-dfrac{a}{64x}+dfrac{a}{64(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{48a(3a-2)+7}{144x^2}+dfrac{7(48a-1)}{3072x}-dfrac{a}{8(x+8)}+dfrac{48a+7}{3072(x-64)}right)u=0$



      Choose $a=dfrac{1}{12}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{2x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{7}{1024x}-dfrac{1}{96(x+8)}+dfrac{11}{3072(x-64)}right)u=0$



      In fact according to http://www.wolframalpha.com/input/?i=y%27%27%2B(1%2F(x%2B8)%2B1%2F(3x)%2B1%2F(x-64))y%27%2B(7%2F(144x%5E2)-7%2F(3072x)%2B7%2F(3072(x-64)))y%3D0, it is possible to simplify to hypergeometric ODE luckily.



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{dy}{dx}+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)y=0$ ,



      Let $y=x^a(x-4)^bu$ ,



      Then $dfrac{dy}{dx}=x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)u$



      $dfrac{d^2y}{dx^2}=x^a(x-4)^bdfrac{d^2u}{dx^2}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u=x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u$



      $therefore x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)left(x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)uright)+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)x^a(x-4)^bu=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a}{x}+dfrac{2b}{x-4}right)dfrac{du}{dx}+left(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}-dfrac{a}{x^2}+dfrac{a}{x(x-1)}+dfrac{a}{x(x-4)}+dfrac{b}{(x-4)(x+8)}-dfrac{b}{x(x-4)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)^2}right)u+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a-1}{x}+dfrac{1}{x-1}+dfrac{2b+1}{x-4}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{a(a-2)+1}{x^2}+dfrac{3}{4x}+dfrac{a}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{2ab+a-b}{x(x-4)}+dfrac{a}{x(x+8)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)(x+8)}+dfrac{4b^2-1}{4(x-4)^2}right)u=0$



      Choose $a=1$ and $b=-dfrac{1}{2}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{3}{4x}+dfrac{1}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{1}{2x(x-4)}+dfrac{1}{x(x+8)}-dfrac{1}{2(x-1)(x-4)}-dfrac{1}{2(x-4)(x+8)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$






      share|cite|improve this answer














      Hint:



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{dy}{dx}+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)y=0$ ,



      Let $y=x^au$ ,



      Then $dfrac{dy}{dx}=x^adfrac{du}{dx}+ax^{a-1}u$



      $dfrac{d^2y}{dx^2}=x^adfrac{d^2u}{dx^2}+ax^{a-1}dfrac{du}{dx}+ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u=x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u$



      $therefore x^adfrac{d^2u}{dx^2}+2ax^{a-1}dfrac{du}{dx}+a(a-1)x^{a-2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)left(x^adfrac{du}{dx}+ax^{a-1}uright)+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)x^au=0$



      $dfrac{d^2u}{dx^2}+dfrac{2a}{x}dfrac{du}{dx}+dfrac{a(a-1)}{x^2}u+left(dfrac{1}{x+8}+dfrac{1}{3x}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}+dfrac{a}{3x^2}+dfrac{a}{x(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{a(3a-2)}{3x^2}+dfrac{a}{8x}-dfrac{a}{8(x+8)}-dfrac{a}{64x}+dfrac{a}{64(x-64)}right)u+left(dfrac{7}{144x^2}-dfrac{7}{3072x}+dfrac{7}{3072(x-64)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{6a+1}{3x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{48a(3a-2)+7}{144x^2}+dfrac{7(48a-1)}{3072x}-dfrac{a}{8(x+8)}+dfrac{48a+7}{3072(x-64)}right)u=0$



      Choose $a=dfrac{1}{12}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{2x}+dfrac{1}{x+8}+dfrac{1}{x-64}right)dfrac{du}{dx}+left(dfrac{7}{1024x}-dfrac{1}{96(x+8)}+dfrac{11}{3072(x-64)}right)u=0$



      In fact according to http://www.wolframalpha.com/input/?i=y%27%27%2B(1%2F(x%2B8)%2B1%2F(3x)%2B1%2F(x-64))y%27%2B(7%2F(144x%5E2)-7%2F(3072x)%2B7%2F(3072(x-64)))y%3D0, it is possible to simplify to hypergeometric ODE luckily.



      For $dfrac{d^2y}{dx^2}+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{dy}{dx}+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)y=0$ ,



      Let $y=x^a(x-4)^bu$ ,



      Then $dfrac{dy}{dx}=x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)u$



      $dfrac{d^2y}{dx^2}=x^a(x-4)^bdfrac{d^2u}{dx^2}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u=x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u$



      $therefore x^a(x-4)^bdfrac{d^2u}{dx^2}+2x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)dfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)left(x^a(x-4)^bdfrac{du}{dx}+x^a(x-4)^bleft(dfrac{a}{x}+dfrac{b}{x-4}right)uright)+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)x^a(x-4)^bu=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a}{x}+dfrac{2b}{x-4}right)dfrac{du}{dx}+left(dfrac{a(a-1)}{x^2}+dfrac{2ab}{x(x-4)}+dfrac{b(b-1)}{(x-4)^2}right)u+left(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}right)dfrac{du}{dx}+left(dfrac{a}{x(x+8)}-dfrac{a}{x^2}+dfrac{a}{x(x-1)}+dfrac{a}{x(x-4)}+dfrac{b}{(x-4)(x+8)}-dfrac{b}{x(x-4)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)^2}right)u+left(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{2a-1}{x}+dfrac{1}{x-1}+dfrac{2b+1}{x-4}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{a(a-2)+1}{x^2}+dfrac{3}{4x}+dfrac{a}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{2ab+a-b}{x(x-4)}+dfrac{a}{x(x+8)}+dfrac{b}{(x-1)(x-4)}+dfrac{b}{(x-4)(x+8)}+dfrac{4b^2-1}{4(x-4)^2}right)u=0$



      Choose $a=1$ and $b=-dfrac{1}{2}$ , the ODE becomes



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}+left(dfrac{3}{4x}+dfrac{1}{x(x-1)}-dfrac{5}{6(x-1)}+dfrac{1}{2x(x-4)}+dfrac{1}{x(x+8)}-dfrac{1}{2(x-1)(x-4)}-dfrac{1}{2(x-4)(x+8)}right)u=0$



      $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Aug 5 '17 at 7:49

























      answered Aug 4 '17 at 14:42









      doraemonpaul

      12.5k31660




      12.5k31660












      • I do not understand your hint. What is $a$ supposed to be?
        – glebovg
        Aug 5 '17 at 0:20




















      • I do not understand your hint. What is $a$ supposed to be?
        – glebovg
        Aug 5 '17 at 0:20


















      I do not understand your hint. What is $a$ supposed to be?
      – glebovg
      Aug 5 '17 at 0:20






      I do not understand your hint. What is $a$ supposed to be?
      – glebovg
      Aug 5 '17 at 0:20












      up vote
      1
      down vote













      Let us focus on the second ODE since at the first glance it has three regular singular points and as such it should be possible to map it onto the hyper-geometric equation which too has three singular points. For 2nd order ODEs we always reduce it to the normal form, i.e. such that has no coefficient at the first derivative. This is done by writing $y(x)=m(x) cdot v(x)$ where $m(x):=exp(-1/2 int a_1(x) dx)$and $a_1(x)$ is the coeffcient at the 1st derivative. In our case:
      begin{equation}
      a_1(x)=frac{1}{x+8} + frac{1}{3 x} + frac{1}{x-64}
      end{equation}

      therefore $m(x)=(x+8)^{-1/2} x^{-1/6} (x-64)^{-1/2}$ and the function $v(x)$ satisfies the following ODE:
      begin{equation}
      v^{''}(x) + frac{48(1024+112 x+25 x^2)}{(-64+x)^2 x^2 (8+x)^2} v(x)=0 quad (I)
      end{equation}



      Now what we want to do is to relate the ODE above to the appropriately transformed hypergeometric ODE.
      begin{equation}
      x(1-x) Y^{''}(x) + (c-(a+b+1)x)Y^{'}(x)-a b Y(x)=0
      end{equation}

      We will start from that ODE and carry out two transformations. Let us take the Moebius function $f(x):=(A x+B)/(C x+D)$ and firstly change the abscissa $x rightarrow f(x)$ and $d/dx rightarrow 1/f^{'}(x) d/d x$ and then reduce the equation to the normal form by writing
      begin{equation}
      Y(x):= (A x+B)^{-c/2} (B-D+(A-C) x)^{-(1+a+b-c)/2} (D+C x)^{(-1+a+b)/2}cdot V(x)
      end{equation}

      Having done this we obtain the following ODE for the function $V(x)$. We have:
      begin{eqnarray}
      V^{''}(x)- frac{(B C-A D)^2}{4} cdot frac{{mathfrak A_0}+{mathfrak A_1} x+{mathfrak A_2} x^2}{(B+A x)^2 (B-D+(A-C) x)^2 (D+C x)^2} cdot V(x)=0 quad(II)
      end{eqnarray}

      where:
      begin{eqnarray}
      {mathfrak A_0}&:=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
      {mathfrak A_1}&:=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)D))right)\
      {mathfrak A}_2&:=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
      end{eqnarray}



      Note that ODE $(I)$ has exactly the same form as $(II)$. All we need to do is to adjust the parameters accordingly to map the later to the former. Firstly we find the upper case letters by matching the zeros of the denominator. Choosing
      begin{eqnarray}
      B&=&-64 A\
      C&=&-8 A\
      D&=&-64 A
      end{eqnarray}

      does the job.
      Now comes the toughest part meaning choosing the lower case parameters to match the numerators in ODEs $(I)$ and $(II)$. We have:
      begin{eqnarray}
      {mathfrak A_0}=-16 left(4096 a^2+8192 a b-8192 a c+4096 b^2-8192 b c+4096 c^2-4096right)=48 times 1024\
      {mathfrak A_1}=-16 left(-128 a^2+2048 a b-896 a c-128 b^2-896 b c+1024 c^2-1152
      c+128right)=48 times 112\
      {mathfrak A_2}=-16 left(a^2-34 a b+16 a c+b^2+16 b c+64 c^2-144 c-1right)=48 times 25
      end{eqnarray}

      These are just quadratic equations so they can be solved. In fact there are two sets of solutions:
      begin{eqnarray}
      (a,b,c)&=&(frac{1}{4},frac{1}{4},1)\
      (a,b,c)&=&(frac{3}{4},frac{3}{4},1)
      end{eqnarray}

      Now we have completed the job. We made sure that $v(x)=V(x)$. All we have to do is to bring everything together and simplify. We have:
      begin{eqnarray}
      y(x)=C_1 x^{frac{1}{12}} (8+x)^{-frac{1}{4}} F_{2,1}left[1/4,1/4,1;frac{x-64}{-8 x-64}right] + C_2 x^{frac{7}{12}} (8+x)^{-frac{3}{4}} F_{2,1}left[3/4,3/4,1;frac{x-64}{-8 x-64}right]
      end{eqnarray}

      The final step is to verify the result using a Computer Algebra System. We have:



      In[295]:= 
      FullSimplify[(D[#, {x, 2}] + (1/(x + 8) + 1/(3 x) + 1/(x - 64)) D[#,
      x] + (7/(144 x^2) - 7/(3072 x) +
      7/(3072 (x - 64))) #) & /@ { (x)^(1/(12)) ( (8 + x))^(-1/4)
      Hypergeometric2F1[1/4, 1/4, 1, (x - 64)/(-8 x - 64)], ((x)^(
      7/(12)))/((8 + x))^(3/4)
      Hypergeometric2F1[3/4, 3/4, 1, (x - 64)/(-8 x - 64)]}]

      Out[295]= {0, 0}





      share|cite|improve this answer























      • The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
        – eyeballfrog
        Oct 19 at 11:15










      • @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
        – Przemo
        Oct 22 at 11:30

















      up vote
      1
      down vote













      Let us focus on the second ODE since at the first glance it has three regular singular points and as such it should be possible to map it onto the hyper-geometric equation which too has three singular points. For 2nd order ODEs we always reduce it to the normal form, i.e. such that has no coefficient at the first derivative. This is done by writing $y(x)=m(x) cdot v(x)$ where $m(x):=exp(-1/2 int a_1(x) dx)$and $a_1(x)$ is the coeffcient at the 1st derivative. In our case:
      begin{equation}
      a_1(x)=frac{1}{x+8} + frac{1}{3 x} + frac{1}{x-64}
      end{equation}

      therefore $m(x)=(x+8)^{-1/2} x^{-1/6} (x-64)^{-1/2}$ and the function $v(x)$ satisfies the following ODE:
      begin{equation}
      v^{''}(x) + frac{48(1024+112 x+25 x^2)}{(-64+x)^2 x^2 (8+x)^2} v(x)=0 quad (I)
      end{equation}



      Now what we want to do is to relate the ODE above to the appropriately transformed hypergeometric ODE.
      begin{equation}
      x(1-x) Y^{''}(x) + (c-(a+b+1)x)Y^{'}(x)-a b Y(x)=0
      end{equation}

      We will start from that ODE and carry out two transformations. Let us take the Moebius function $f(x):=(A x+B)/(C x+D)$ and firstly change the abscissa $x rightarrow f(x)$ and $d/dx rightarrow 1/f^{'}(x) d/d x$ and then reduce the equation to the normal form by writing
      begin{equation}
      Y(x):= (A x+B)^{-c/2} (B-D+(A-C) x)^{-(1+a+b-c)/2} (D+C x)^{(-1+a+b)/2}cdot V(x)
      end{equation}

      Having done this we obtain the following ODE for the function $V(x)$. We have:
      begin{eqnarray}
      V^{''}(x)- frac{(B C-A D)^2}{4} cdot frac{{mathfrak A_0}+{mathfrak A_1} x+{mathfrak A_2} x^2}{(B+A x)^2 (B-D+(A-C) x)^2 (D+C x)^2} cdot V(x)=0 quad(II)
      end{eqnarray}

      where:
      begin{eqnarray}
      {mathfrak A_0}&:=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
      {mathfrak A_1}&:=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)D))right)\
      {mathfrak A}_2&:=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
      end{eqnarray}



      Note that ODE $(I)$ has exactly the same form as $(II)$. All we need to do is to adjust the parameters accordingly to map the later to the former. Firstly we find the upper case letters by matching the zeros of the denominator. Choosing
      begin{eqnarray}
      B&=&-64 A\
      C&=&-8 A\
      D&=&-64 A
      end{eqnarray}

      does the job.
      Now comes the toughest part meaning choosing the lower case parameters to match the numerators in ODEs $(I)$ and $(II)$. We have:
      begin{eqnarray}
      {mathfrak A_0}=-16 left(4096 a^2+8192 a b-8192 a c+4096 b^2-8192 b c+4096 c^2-4096right)=48 times 1024\
      {mathfrak A_1}=-16 left(-128 a^2+2048 a b-896 a c-128 b^2-896 b c+1024 c^2-1152
      c+128right)=48 times 112\
      {mathfrak A_2}=-16 left(a^2-34 a b+16 a c+b^2+16 b c+64 c^2-144 c-1right)=48 times 25
      end{eqnarray}

      These are just quadratic equations so they can be solved. In fact there are two sets of solutions:
      begin{eqnarray}
      (a,b,c)&=&(frac{1}{4},frac{1}{4},1)\
      (a,b,c)&=&(frac{3}{4},frac{3}{4},1)
      end{eqnarray}

      Now we have completed the job. We made sure that $v(x)=V(x)$. All we have to do is to bring everything together and simplify. We have:
      begin{eqnarray}
      y(x)=C_1 x^{frac{1}{12}} (8+x)^{-frac{1}{4}} F_{2,1}left[1/4,1/4,1;frac{x-64}{-8 x-64}right] + C_2 x^{frac{7}{12}} (8+x)^{-frac{3}{4}} F_{2,1}left[3/4,3/4,1;frac{x-64}{-8 x-64}right]
      end{eqnarray}

      The final step is to verify the result using a Computer Algebra System. We have:



      In[295]:= 
      FullSimplify[(D[#, {x, 2}] + (1/(x + 8) + 1/(3 x) + 1/(x - 64)) D[#,
      x] + (7/(144 x^2) - 7/(3072 x) +
      7/(3072 (x - 64))) #) & /@ { (x)^(1/(12)) ( (8 + x))^(-1/4)
      Hypergeometric2F1[1/4, 1/4, 1, (x - 64)/(-8 x - 64)], ((x)^(
      7/(12)))/((8 + x))^(3/4)
      Hypergeometric2F1[3/4, 3/4, 1, (x - 64)/(-8 x - 64)]}]

      Out[295]= {0, 0}





      share|cite|improve this answer























      • The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
        – eyeballfrog
        Oct 19 at 11:15










      • @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
        – Przemo
        Oct 22 at 11:30















      up vote
      1
      down vote










      up vote
      1
      down vote









      Let us focus on the second ODE since at the first glance it has three regular singular points and as such it should be possible to map it onto the hyper-geometric equation which too has three singular points. For 2nd order ODEs we always reduce it to the normal form, i.e. such that has no coefficient at the first derivative. This is done by writing $y(x)=m(x) cdot v(x)$ where $m(x):=exp(-1/2 int a_1(x) dx)$and $a_1(x)$ is the coeffcient at the 1st derivative. In our case:
      begin{equation}
      a_1(x)=frac{1}{x+8} + frac{1}{3 x} + frac{1}{x-64}
      end{equation}

      therefore $m(x)=(x+8)^{-1/2} x^{-1/6} (x-64)^{-1/2}$ and the function $v(x)$ satisfies the following ODE:
      begin{equation}
      v^{''}(x) + frac{48(1024+112 x+25 x^2)}{(-64+x)^2 x^2 (8+x)^2} v(x)=0 quad (I)
      end{equation}



      Now what we want to do is to relate the ODE above to the appropriately transformed hypergeometric ODE.
      begin{equation}
      x(1-x) Y^{''}(x) + (c-(a+b+1)x)Y^{'}(x)-a b Y(x)=0
      end{equation}

      We will start from that ODE and carry out two transformations. Let us take the Moebius function $f(x):=(A x+B)/(C x+D)$ and firstly change the abscissa $x rightarrow f(x)$ and $d/dx rightarrow 1/f^{'}(x) d/d x$ and then reduce the equation to the normal form by writing
      begin{equation}
      Y(x):= (A x+B)^{-c/2} (B-D+(A-C) x)^{-(1+a+b-c)/2} (D+C x)^{(-1+a+b)/2}cdot V(x)
      end{equation}

      Having done this we obtain the following ODE for the function $V(x)$. We have:
      begin{eqnarray}
      V^{''}(x)- frac{(B C-A D)^2}{4} cdot frac{{mathfrak A_0}+{mathfrak A_1} x+{mathfrak A_2} x^2}{(B+A x)^2 (B-D+(A-C) x)^2 (D+C x)^2} cdot V(x)=0 quad(II)
      end{eqnarray}

      where:
      begin{eqnarray}
      {mathfrak A_0}&:=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
      {mathfrak A_1}&:=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)D))right)\
      {mathfrak A}_2&:=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
      end{eqnarray}



      Note that ODE $(I)$ has exactly the same form as $(II)$. All we need to do is to adjust the parameters accordingly to map the later to the former. Firstly we find the upper case letters by matching the zeros of the denominator. Choosing
      begin{eqnarray}
      B&=&-64 A\
      C&=&-8 A\
      D&=&-64 A
      end{eqnarray}

      does the job.
      Now comes the toughest part meaning choosing the lower case parameters to match the numerators in ODEs $(I)$ and $(II)$. We have:
      begin{eqnarray}
      {mathfrak A_0}=-16 left(4096 a^2+8192 a b-8192 a c+4096 b^2-8192 b c+4096 c^2-4096right)=48 times 1024\
      {mathfrak A_1}=-16 left(-128 a^2+2048 a b-896 a c-128 b^2-896 b c+1024 c^2-1152
      c+128right)=48 times 112\
      {mathfrak A_2}=-16 left(a^2-34 a b+16 a c+b^2+16 b c+64 c^2-144 c-1right)=48 times 25
      end{eqnarray}

      These are just quadratic equations so they can be solved. In fact there are two sets of solutions:
      begin{eqnarray}
      (a,b,c)&=&(frac{1}{4},frac{1}{4},1)\
      (a,b,c)&=&(frac{3}{4},frac{3}{4},1)
      end{eqnarray}

      Now we have completed the job. We made sure that $v(x)=V(x)$. All we have to do is to bring everything together and simplify. We have:
      begin{eqnarray}
      y(x)=C_1 x^{frac{1}{12}} (8+x)^{-frac{1}{4}} F_{2,1}left[1/4,1/4,1;frac{x-64}{-8 x-64}right] + C_2 x^{frac{7}{12}} (8+x)^{-frac{3}{4}} F_{2,1}left[3/4,3/4,1;frac{x-64}{-8 x-64}right]
      end{eqnarray}

      The final step is to verify the result using a Computer Algebra System. We have:



      In[295]:= 
      FullSimplify[(D[#, {x, 2}] + (1/(x + 8) + 1/(3 x) + 1/(x - 64)) D[#,
      x] + (7/(144 x^2) - 7/(3072 x) +
      7/(3072 (x - 64))) #) & /@ { (x)^(1/(12)) ( (8 + x))^(-1/4)
      Hypergeometric2F1[1/4, 1/4, 1, (x - 64)/(-8 x - 64)], ((x)^(
      7/(12)))/((8 + x))^(3/4)
      Hypergeometric2F1[3/4, 3/4, 1, (x - 64)/(-8 x - 64)]}]

      Out[295]= {0, 0}





      share|cite|improve this answer














      Let us focus on the second ODE since at the first glance it has three regular singular points and as such it should be possible to map it onto the hyper-geometric equation which too has three singular points. For 2nd order ODEs we always reduce it to the normal form, i.e. such that has no coefficient at the first derivative. This is done by writing $y(x)=m(x) cdot v(x)$ where $m(x):=exp(-1/2 int a_1(x) dx)$and $a_1(x)$ is the coeffcient at the 1st derivative. In our case:
      begin{equation}
      a_1(x)=frac{1}{x+8} + frac{1}{3 x} + frac{1}{x-64}
      end{equation}

      therefore $m(x)=(x+8)^{-1/2} x^{-1/6} (x-64)^{-1/2}$ and the function $v(x)$ satisfies the following ODE:
      begin{equation}
      v^{''}(x) + frac{48(1024+112 x+25 x^2)}{(-64+x)^2 x^2 (8+x)^2} v(x)=0 quad (I)
      end{equation}



      Now what we want to do is to relate the ODE above to the appropriately transformed hypergeometric ODE.
      begin{equation}
      x(1-x) Y^{''}(x) + (c-(a+b+1)x)Y^{'}(x)-a b Y(x)=0
      end{equation}

      We will start from that ODE and carry out two transformations. Let us take the Moebius function $f(x):=(A x+B)/(C x+D)$ and firstly change the abscissa $x rightarrow f(x)$ and $d/dx rightarrow 1/f^{'}(x) d/d x$ and then reduce the equation to the normal form by writing
      begin{equation}
      Y(x):= (A x+B)^{-c/2} (B-D+(A-C) x)^{-(1+a+b-c)/2} (D+C x)^{(-1+a+b)/2}cdot V(x)
      end{equation}

      Having done this we obtain the following ODE for the function $V(x)$. We have:
      begin{eqnarray}
      V^{''}(x)- frac{(B C-A D)^2}{4} cdot frac{{mathfrak A_0}+{mathfrak A_1} x+{mathfrak A_2} x^2}{(B+A x)^2 (B-D+(A-C) x)^2 (D+C x)^2} cdot V(x)=0 quad(II)
      end{eqnarray}

      where:
      begin{eqnarray}
      {mathfrak A_0}&:=&B^2 left(a^2-2 a b+b^2-1right)+2 B D (2 a b-a c-b c+c)+(c-2) c D^2\
      {mathfrak A_1}&:=&2 left(A left(B left(a^2-2 a b+b^2-1right)+D (2 a b-a c-b c+c)right)+C (a B (2 b-c)+c (-b B+B+(c-2)D))right)\
      {mathfrak A}_2&:=&A^2 left(a^2-2 a b+b^2-1right)+2 A C (2 a b-a c-b c+c)+(c-2) c C^2
      end{eqnarray}



      Note that ODE $(I)$ has exactly the same form as $(II)$. All we need to do is to adjust the parameters accordingly to map the later to the former. Firstly we find the upper case letters by matching the zeros of the denominator. Choosing
      begin{eqnarray}
      B&=&-64 A\
      C&=&-8 A\
      D&=&-64 A
      end{eqnarray}

      does the job.
      Now comes the toughest part meaning choosing the lower case parameters to match the numerators in ODEs $(I)$ and $(II)$. We have:
      begin{eqnarray}
      {mathfrak A_0}=-16 left(4096 a^2+8192 a b-8192 a c+4096 b^2-8192 b c+4096 c^2-4096right)=48 times 1024\
      {mathfrak A_1}=-16 left(-128 a^2+2048 a b-896 a c-128 b^2-896 b c+1024 c^2-1152
      c+128right)=48 times 112\
      {mathfrak A_2}=-16 left(a^2-34 a b+16 a c+b^2+16 b c+64 c^2-144 c-1right)=48 times 25
      end{eqnarray}

      These are just quadratic equations so they can be solved. In fact there are two sets of solutions:
      begin{eqnarray}
      (a,b,c)&=&(frac{1}{4},frac{1}{4},1)\
      (a,b,c)&=&(frac{3}{4},frac{3}{4},1)
      end{eqnarray}

      Now we have completed the job. We made sure that $v(x)=V(x)$. All we have to do is to bring everything together and simplify. We have:
      begin{eqnarray}
      y(x)=C_1 x^{frac{1}{12}} (8+x)^{-frac{1}{4}} F_{2,1}left[1/4,1/4,1;frac{x-64}{-8 x-64}right] + C_2 x^{frac{7}{12}} (8+x)^{-frac{3}{4}} F_{2,1}left[3/4,3/4,1;frac{x-64}{-8 x-64}right]
      end{eqnarray}

      The final step is to verify the result using a Computer Algebra System. We have:



      In[295]:= 
      FullSimplify[(D[#, {x, 2}] + (1/(x + 8) + 1/(3 x) + 1/(x - 64)) D[#,
      x] + (7/(144 x^2) - 7/(3072 x) +
      7/(3072 (x - 64))) #) & /@ { (x)^(1/(12)) ( (8 + x))^(-1/4)
      Hypergeometric2F1[1/4, 1/4, 1, (x - 64)/(-8 x - 64)], ((x)^(
      7/(12)))/((8 + x))^(3/4)
      Hypergeometric2F1[3/4, 3/4, 1, (x - 64)/(-8 x - 64)]}]

      Out[295]= {0, 0}






      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Oct 19 at 11:09

























      answered Oct 19 at 10:59









      Przemo

      4,1521928




      4,1521928












      • The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
        – eyeballfrog
        Oct 19 at 11:15










      • @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
        – Przemo
        Oct 22 at 11:30




















      • The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
        – eyeballfrog
        Oct 19 at 11:15










      • @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
        – Przemo
        Oct 22 at 11:30


















      The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
      – eyeballfrog
      Oct 19 at 11:15




      The first equation can be solved through a similar method by making the substitution $y(x) = x u(x)$. The resulting equation for $u$ has only 3 singular points.
      – eyeballfrog
      Oct 19 at 11:15












      @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
      – Przemo
      Oct 22 at 11:30






      @ eyeballfrog I am sorry but I don't understand your point. It is easy to see that the transformation $y(x)=x^n u(x)$ does not change the normal form (meaning the one where the coefficient at the first derivative is annihilated) which in case of the first ODE reads: begin{equation} v''(x)-frac{left(x^6+11 x^5+21 x^4-232 x^3+1120 x^2-960 x+768right) v(x)}{12 (x-4) (x-1)^2 x^2 (x+8)^2} end{equation} It has clearly four singular points and as such cannot be mapped onto the hypergeometric equation.
      – Przemo
      Oct 22 at 11:30












      up vote
      1
      down vote













      Now let us turn attention to the first ODE.



      Here we start from the hypergeometric ODE
      begin{eqnarray}
      y^{''}(x) + left( frac{c}{x} + frac{a+b-c+1}{x-1} right) y^{'}(x) + frac{a b}{x(x-1)} y(x)=0
      end{eqnarray}



      and we change the abscissa $x rightarrow f(x)$ and after that the ordinate $y(x) = m(x) v(x)$. After some straightforward calculations we end up with the following ODE:
      begin{eqnarray}
      v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
      end{eqnarray}

      where:
      begin{eqnarray}
      a_0(x)&:=&frac{m''(x)}{m(x)}+frac{a b f'(x)^2}{(f(x)-1) f(x)} +frac{m'(x)}{m(x)}left(frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
      a_1(x)&:=&frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
      end{eqnarray}



      Now we match the coefficients at the first derivative and solve for the function $m(x)$. Note that since $a_1(x)$ depends only on the first derivative of the function $m(x)$ we can always formally solve the resulting ODE. The solution reads:
      begin{eqnarray}
      m(x)&=& frac{sqrt{(x-4) (x-1) (x+8)} f(x)^{-c/2} sqrt{f'(x)} (1-f(x))^{frac{1}{2} (-a-b+c-1)}}{sqrt{x}} quad (II)
      end{eqnarray}

      Now all we need to do is to insert the above into the definition of $a_0(x)$ then equate the result to the coefficient at the zeroth derivative and solve for $f(x)$. This is easier said than done because the resulting differential equation is highly nonlinear.However what we can do is to assume that $f(x)$ has a particular functional form-- in this case it is a rational function and then adjust the parameters of that function such that the relevant coefficients match. This is again easier said than done because the resulting expressions quickly become unwieldy if only the degrees of the numerator and denominator get bigger than one. Therefore for the time being we only consider the old good Moebius function $f(x)=(A x+B)/(C x+D)$.
      If we insert this along with $(II)$ into $(Ia)$ we end up with a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $(x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$ and $((A-C)x+(B-D))^2$.
      Now there are only three ways for the relevant denominators to match.
      begin{eqnarray}
      left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} end{array}right) =
      left{
      left( begin{array}{r} 0\ -1 \ -4 end{array}right),
      left( begin{array}{r} 0\ -1 \ +8 end{array}right),
      left( begin{array}{r} 0\ -4 \ +8 end{array}right),
      left( begin{array}{r} -1\ -4 \ +8 end{array}right)
      right}
      end{eqnarray}

      This leads to following solutions for the function $f(x)$. We have:



      begin{eqnarray}
      f(x)=left{
      frac{3/4 x}{-1/4 x+1},
      frac{9/8 x}{1/8 x+1},
      frac{3/8 x}{1/8 x+1},
      frac{1/2 x-1/2}{1/8 x+1}
      right} quad (III)
      end{eqnarray}

      Now inserting $(III)$ along with $(II)$ into $(Ia)$ and $(Ib)$ we get:
      begin{eqnarray}
      v(x)&=&frac{1}{m(x)} left(
      C_1 F_{2,1}[a,b,c,f(x)] + C_2 f[x]^{1-c} F_{2,1}[a+1-c,b+1-c,2-c,f(x)]
      right)
      end{eqnarray}

      where
      begin{eqnarray}
      a_1(x)&=&frac{1}{x-1}-frac{1}{x}+frac{1}{x+8}+frac{1}{x-4}
      end{eqnarray}

      and
      begin{eqnarray}
      a_0(x)&=&frac{-3 a^2+18 a b-6 a c-3 b^2-6 b c+9 c^2-12 c-8}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{4 a^2-6 a b-a c+4 b^2-b c+c-2}{24 (x-4)}+frac{-a^2+2 a b-b^2}{4 (x-4)^2}+frac{-12 a b+6 a c+6 b c-8
      c^2+10 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{5}{144 (x+8)}-frac{1}{4 (x+8)^2}\
      a_0(x)&=&frac{a^2+18 a b-10 a c+b^2-10 b c+9 c^2-8 c-12}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{-8 a^2+18 a b-a c-8 b^2-b c+c+3}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-18 a b+9 a c+9 b c-8
      c^2+7 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}+frac{1}{12 (x-4)}-frac{1}{4 (x-4)^2}\
      a_0(x)&=&frac{a^2+6 a b-4 a c+b^2-4 b c+3 c^2-2 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+18 a b-3 a c-6 b^2-3 b c+3 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-6 a b+3 a c+3 b c-2
      c^2+c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{11}{18 (x-1)}-frac{1}{4 (x-1)^2}\
      a_0(x)&=&frac{a^2+8 a b-5 a c+b^2-5 b c+4 c^2-3 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+16 a b-2 a c-6 b^2-2 b c+2 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-8 a b+4 a c+4 b c-3
      c^2+2 c-11}{18 (x-1)}+frac{-c^2+2 c-1}{4 (x-1)^2}+frac{3}{4 x^2}+frac{9}{16 x}
      end{eqnarray}

      The nonbelievers can run the code below to make sure it is correct:



      Clear[m]; Clear[f]; Clear[a1]; Clear[a0]; a =.; b =.; c =.; x =.;
      m[x_] = Sqrt[(-4 + x) (-1 + x) (8 + x)]/
      Sqrt[x] (1 - f[x])^((-1 - a - b + c)/2) f[x]^(-c/2) Sqrt[f'[x]];
      f[x_] = (3/4 x)/(-1/4 x + 1);(*(0,-1,-4)*)
      f[x_] = (9/8 x)/(1/8 x + 1);(*(0,-1,+8)*)
      f[x_] = (3/8 x)/(1/8 x + 1);(*(0,-4,+8)*)
      f[x_] = (1/2 x - 1/2)/(1/8 x + 1);(*(-1,-4,+8)*)


      a0[x_] = (
      a b Derivative[1][f][x]^2)/((-1 + f[x]) f[x]) + -((
      Derivative[1][m][
      x] (c Derivative[1][f][x]^2 - f[x] Derivative[1][f][x]^2 -
      a f[x] Derivative[1][f][x]^2 - b f[x] Derivative[1][f][x]^2 -
      f[x] (f^[Prime][Prime])[x] +
      f[x]^2 (f^[Prime][Prime])[x]))/(
      m[x] (-1 + f[x]) f[x] Derivative[1][f][x])) + (
      m^[Prime][Prime])[x]/ m[x];
      a1[x_] = ((1 + a + b - c) Derivative[1][f][x])/(-1 + f[x]) + (
      c Derivative[1][f][x])/ f[x] + (2 Derivative[1][m][x])/
      m[x] - (f^[Prime][Prime])[x]/ Derivative[1][f][x];

      (Apart[Together[{a1[x], a0[x]}], x])
      FullSimplify[(D[#, {x, 2}] + a1[x] D[#, {x, 1}] + a0[x] #) & /@ {1/
      m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
      C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c,
      f[x]])}]


      enter image description here



      At the first glance it seems that it is not possible to match the coefficient $a_0(x)$ against that in our original ODE. The later simply contains not enough factors; for example it misses the very important factors $1/(x+8)$ and $1/(x+8)^2$.
      Therefore the lesson from this exercise is the following. In general as the complexity of our original ODE grows it will become harder and harder to match it against solutions of some known ODEs -- in this case the hypergeometric function. However we can always produce a whole family of ODEs which are close to the original one and whose solutions are known. This is what we have accomplished in here.






      share|cite|improve this answer



























        up vote
        1
        down vote













        Now let us turn attention to the first ODE.



        Here we start from the hypergeometric ODE
        begin{eqnarray}
        y^{''}(x) + left( frac{c}{x} + frac{a+b-c+1}{x-1} right) y^{'}(x) + frac{a b}{x(x-1)} y(x)=0
        end{eqnarray}



        and we change the abscissa $x rightarrow f(x)$ and after that the ordinate $y(x) = m(x) v(x)$. After some straightforward calculations we end up with the following ODE:
        begin{eqnarray}
        v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
        end{eqnarray}

        where:
        begin{eqnarray}
        a_0(x)&:=&frac{m''(x)}{m(x)}+frac{a b f'(x)^2}{(f(x)-1) f(x)} +frac{m'(x)}{m(x)}left(frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
        a_1(x)&:=&frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
        end{eqnarray}



        Now we match the coefficients at the first derivative and solve for the function $m(x)$. Note that since $a_1(x)$ depends only on the first derivative of the function $m(x)$ we can always formally solve the resulting ODE. The solution reads:
        begin{eqnarray}
        m(x)&=& frac{sqrt{(x-4) (x-1) (x+8)} f(x)^{-c/2} sqrt{f'(x)} (1-f(x))^{frac{1}{2} (-a-b+c-1)}}{sqrt{x}} quad (II)
        end{eqnarray}

        Now all we need to do is to insert the above into the definition of $a_0(x)$ then equate the result to the coefficient at the zeroth derivative and solve for $f(x)$. This is easier said than done because the resulting differential equation is highly nonlinear.However what we can do is to assume that $f(x)$ has a particular functional form-- in this case it is a rational function and then adjust the parameters of that function such that the relevant coefficients match. This is again easier said than done because the resulting expressions quickly become unwieldy if only the degrees of the numerator and denominator get bigger than one. Therefore for the time being we only consider the old good Moebius function $f(x)=(A x+B)/(C x+D)$.
        If we insert this along with $(II)$ into $(Ia)$ we end up with a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $(x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$ and $((A-C)x+(B-D))^2$.
        Now there are only three ways for the relevant denominators to match.
        begin{eqnarray}
        left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} end{array}right) =
        left{
        left( begin{array}{r} 0\ -1 \ -4 end{array}right),
        left( begin{array}{r} 0\ -1 \ +8 end{array}right),
        left( begin{array}{r} 0\ -4 \ +8 end{array}right),
        left( begin{array}{r} -1\ -4 \ +8 end{array}right)
        right}
        end{eqnarray}

        This leads to following solutions for the function $f(x)$. We have:



        begin{eqnarray}
        f(x)=left{
        frac{3/4 x}{-1/4 x+1},
        frac{9/8 x}{1/8 x+1},
        frac{3/8 x}{1/8 x+1},
        frac{1/2 x-1/2}{1/8 x+1}
        right} quad (III)
        end{eqnarray}

        Now inserting $(III)$ along with $(II)$ into $(Ia)$ and $(Ib)$ we get:
        begin{eqnarray}
        v(x)&=&frac{1}{m(x)} left(
        C_1 F_{2,1}[a,b,c,f(x)] + C_2 f[x]^{1-c} F_{2,1}[a+1-c,b+1-c,2-c,f(x)]
        right)
        end{eqnarray}

        where
        begin{eqnarray}
        a_1(x)&=&frac{1}{x-1}-frac{1}{x}+frac{1}{x+8}+frac{1}{x-4}
        end{eqnarray}

        and
        begin{eqnarray}
        a_0(x)&=&frac{-3 a^2+18 a b-6 a c-3 b^2-6 b c+9 c^2-12 c-8}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{4 a^2-6 a b-a c+4 b^2-b c+c-2}{24 (x-4)}+frac{-a^2+2 a b-b^2}{4 (x-4)^2}+frac{-12 a b+6 a c+6 b c-8
        c^2+10 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{5}{144 (x+8)}-frac{1}{4 (x+8)^2}\
        a_0(x)&=&frac{a^2+18 a b-10 a c+b^2-10 b c+9 c^2-8 c-12}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{-8 a^2+18 a b-a c-8 b^2-b c+c+3}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-18 a b+9 a c+9 b c-8
        c^2+7 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}+frac{1}{12 (x-4)}-frac{1}{4 (x-4)^2}\
        a_0(x)&=&frac{a^2+6 a b-4 a c+b^2-4 b c+3 c^2-2 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+18 a b-3 a c-6 b^2-3 b c+3 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-6 a b+3 a c+3 b c-2
        c^2+c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{11}{18 (x-1)}-frac{1}{4 (x-1)^2}\
        a_0(x)&=&frac{a^2+8 a b-5 a c+b^2-5 b c+4 c^2-3 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+16 a b-2 a c-6 b^2-2 b c+2 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-8 a b+4 a c+4 b c-3
        c^2+2 c-11}{18 (x-1)}+frac{-c^2+2 c-1}{4 (x-1)^2}+frac{3}{4 x^2}+frac{9}{16 x}
        end{eqnarray}

        The nonbelievers can run the code below to make sure it is correct:



        Clear[m]; Clear[f]; Clear[a1]; Clear[a0]; a =.; b =.; c =.; x =.;
        m[x_] = Sqrt[(-4 + x) (-1 + x) (8 + x)]/
        Sqrt[x] (1 - f[x])^((-1 - a - b + c)/2) f[x]^(-c/2) Sqrt[f'[x]];
        f[x_] = (3/4 x)/(-1/4 x + 1);(*(0,-1,-4)*)
        f[x_] = (9/8 x)/(1/8 x + 1);(*(0,-1,+8)*)
        f[x_] = (3/8 x)/(1/8 x + 1);(*(0,-4,+8)*)
        f[x_] = (1/2 x - 1/2)/(1/8 x + 1);(*(-1,-4,+8)*)


        a0[x_] = (
        a b Derivative[1][f][x]^2)/((-1 + f[x]) f[x]) + -((
        Derivative[1][m][
        x] (c Derivative[1][f][x]^2 - f[x] Derivative[1][f][x]^2 -
        a f[x] Derivative[1][f][x]^2 - b f[x] Derivative[1][f][x]^2 -
        f[x] (f^[Prime][Prime])[x] +
        f[x]^2 (f^[Prime][Prime])[x]))/(
        m[x] (-1 + f[x]) f[x] Derivative[1][f][x])) + (
        m^[Prime][Prime])[x]/ m[x];
        a1[x_] = ((1 + a + b - c) Derivative[1][f][x])/(-1 + f[x]) + (
        c Derivative[1][f][x])/ f[x] + (2 Derivative[1][m][x])/
        m[x] - (f^[Prime][Prime])[x]/ Derivative[1][f][x];

        (Apart[Together[{a1[x], a0[x]}], x])
        FullSimplify[(D[#, {x, 2}] + a1[x] D[#, {x, 1}] + a0[x] #) & /@ {1/
        m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
        C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c,
        f[x]])}]


        enter image description here



        At the first glance it seems that it is not possible to match the coefficient $a_0(x)$ against that in our original ODE. The later simply contains not enough factors; for example it misses the very important factors $1/(x+8)$ and $1/(x+8)^2$.
        Therefore the lesson from this exercise is the following. In general as the complexity of our original ODE grows it will become harder and harder to match it against solutions of some known ODEs -- in this case the hypergeometric function. However we can always produce a whole family of ODEs which are close to the original one and whose solutions are known. This is what we have accomplished in here.






        share|cite|improve this answer

























          up vote
          1
          down vote










          up vote
          1
          down vote









          Now let us turn attention to the first ODE.



          Here we start from the hypergeometric ODE
          begin{eqnarray}
          y^{''}(x) + left( frac{c}{x} + frac{a+b-c+1}{x-1} right) y^{'}(x) + frac{a b}{x(x-1)} y(x)=0
          end{eqnarray}



          and we change the abscissa $x rightarrow f(x)$ and after that the ordinate $y(x) = m(x) v(x)$. After some straightforward calculations we end up with the following ODE:
          begin{eqnarray}
          v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
          end{eqnarray}

          where:
          begin{eqnarray}
          a_0(x)&:=&frac{m''(x)}{m(x)}+frac{a b f'(x)^2}{(f(x)-1) f(x)} +frac{m'(x)}{m(x)}left(frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
          a_1(x)&:=&frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
          end{eqnarray}



          Now we match the coefficients at the first derivative and solve for the function $m(x)$. Note that since $a_1(x)$ depends only on the first derivative of the function $m(x)$ we can always formally solve the resulting ODE. The solution reads:
          begin{eqnarray}
          m(x)&=& frac{sqrt{(x-4) (x-1) (x+8)} f(x)^{-c/2} sqrt{f'(x)} (1-f(x))^{frac{1}{2} (-a-b+c-1)}}{sqrt{x}} quad (II)
          end{eqnarray}

          Now all we need to do is to insert the above into the definition of $a_0(x)$ then equate the result to the coefficient at the zeroth derivative and solve for $f(x)$. This is easier said than done because the resulting differential equation is highly nonlinear.However what we can do is to assume that $f(x)$ has a particular functional form-- in this case it is a rational function and then adjust the parameters of that function such that the relevant coefficients match. This is again easier said than done because the resulting expressions quickly become unwieldy if only the degrees of the numerator and denominator get bigger than one. Therefore for the time being we only consider the old good Moebius function $f(x)=(A x+B)/(C x+D)$.
          If we insert this along with $(II)$ into $(Ia)$ we end up with a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $(x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$ and $((A-C)x+(B-D))^2$.
          Now there are only three ways for the relevant denominators to match.
          begin{eqnarray}
          left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} end{array}right) =
          left{
          left( begin{array}{r} 0\ -1 \ -4 end{array}right),
          left( begin{array}{r} 0\ -1 \ +8 end{array}right),
          left( begin{array}{r} 0\ -4 \ +8 end{array}right),
          left( begin{array}{r} -1\ -4 \ +8 end{array}right)
          right}
          end{eqnarray}

          This leads to following solutions for the function $f(x)$. We have:



          begin{eqnarray}
          f(x)=left{
          frac{3/4 x}{-1/4 x+1},
          frac{9/8 x}{1/8 x+1},
          frac{3/8 x}{1/8 x+1},
          frac{1/2 x-1/2}{1/8 x+1}
          right} quad (III)
          end{eqnarray}

          Now inserting $(III)$ along with $(II)$ into $(Ia)$ and $(Ib)$ we get:
          begin{eqnarray}
          v(x)&=&frac{1}{m(x)} left(
          C_1 F_{2,1}[a,b,c,f(x)] + C_2 f[x]^{1-c} F_{2,1}[a+1-c,b+1-c,2-c,f(x)]
          right)
          end{eqnarray}

          where
          begin{eqnarray}
          a_1(x)&=&frac{1}{x-1}-frac{1}{x}+frac{1}{x+8}+frac{1}{x-4}
          end{eqnarray}

          and
          begin{eqnarray}
          a_0(x)&=&frac{-3 a^2+18 a b-6 a c-3 b^2-6 b c+9 c^2-12 c-8}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{4 a^2-6 a b-a c+4 b^2-b c+c-2}{24 (x-4)}+frac{-a^2+2 a b-b^2}{4 (x-4)^2}+frac{-12 a b+6 a c+6 b c-8
          c^2+10 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{5}{144 (x+8)}-frac{1}{4 (x+8)^2}\
          a_0(x)&=&frac{a^2+18 a b-10 a c+b^2-10 b c+9 c^2-8 c-12}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{-8 a^2+18 a b-a c-8 b^2-b c+c+3}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-18 a b+9 a c+9 b c-8
          c^2+7 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}+frac{1}{12 (x-4)}-frac{1}{4 (x-4)^2}\
          a_0(x)&=&frac{a^2+6 a b-4 a c+b^2-4 b c+3 c^2-2 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+18 a b-3 a c-6 b^2-3 b c+3 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-6 a b+3 a c+3 b c-2
          c^2+c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{11}{18 (x-1)}-frac{1}{4 (x-1)^2}\
          a_0(x)&=&frac{a^2+8 a b-5 a c+b^2-5 b c+4 c^2-3 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+16 a b-2 a c-6 b^2-2 b c+2 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-8 a b+4 a c+4 b c-3
          c^2+2 c-11}{18 (x-1)}+frac{-c^2+2 c-1}{4 (x-1)^2}+frac{3}{4 x^2}+frac{9}{16 x}
          end{eqnarray}

          The nonbelievers can run the code below to make sure it is correct:



          Clear[m]; Clear[f]; Clear[a1]; Clear[a0]; a =.; b =.; c =.; x =.;
          m[x_] = Sqrt[(-4 + x) (-1 + x) (8 + x)]/
          Sqrt[x] (1 - f[x])^((-1 - a - b + c)/2) f[x]^(-c/2) Sqrt[f'[x]];
          f[x_] = (3/4 x)/(-1/4 x + 1);(*(0,-1,-4)*)
          f[x_] = (9/8 x)/(1/8 x + 1);(*(0,-1,+8)*)
          f[x_] = (3/8 x)/(1/8 x + 1);(*(0,-4,+8)*)
          f[x_] = (1/2 x - 1/2)/(1/8 x + 1);(*(-1,-4,+8)*)


          a0[x_] = (
          a b Derivative[1][f][x]^2)/((-1 + f[x]) f[x]) + -((
          Derivative[1][m][
          x] (c Derivative[1][f][x]^2 - f[x] Derivative[1][f][x]^2 -
          a f[x] Derivative[1][f][x]^2 - b f[x] Derivative[1][f][x]^2 -
          f[x] (f^[Prime][Prime])[x] +
          f[x]^2 (f^[Prime][Prime])[x]))/(
          m[x] (-1 + f[x]) f[x] Derivative[1][f][x])) + (
          m^[Prime][Prime])[x]/ m[x];
          a1[x_] = ((1 + a + b - c) Derivative[1][f][x])/(-1 + f[x]) + (
          c Derivative[1][f][x])/ f[x] + (2 Derivative[1][m][x])/
          m[x] - (f^[Prime][Prime])[x]/ Derivative[1][f][x];

          (Apart[Together[{a1[x], a0[x]}], x])
          FullSimplify[(D[#, {x, 2}] + a1[x] D[#, {x, 1}] + a0[x] #) & /@ {1/
          m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
          C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c,
          f[x]])}]


          enter image description here



          At the first glance it seems that it is not possible to match the coefficient $a_0(x)$ against that in our original ODE. The later simply contains not enough factors; for example it misses the very important factors $1/(x+8)$ and $1/(x+8)^2$.
          Therefore the lesson from this exercise is the following. In general as the complexity of our original ODE grows it will become harder and harder to match it against solutions of some known ODEs -- in this case the hypergeometric function. However we can always produce a whole family of ODEs which are close to the original one and whose solutions are known. This is what we have accomplished in here.






          share|cite|improve this answer














          Now let us turn attention to the first ODE.



          Here we start from the hypergeometric ODE
          begin{eqnarray}
          y^{''}(x) + left( frac{c}{x} + frac{a+b-c+1}{x-1} right) y^{'}(x) + frac{a b}{x(x-1)} y(x)=0
          end{eqnarray}



          and we change the abscissa $x rightarrow f(x)$ and after that the ordinate $y(x) = m(x) v(x)$. After some straightforward calculations we end up with the following ODE:
          begin{eqnarray}
          v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
          end{eqnarray}

          where:
          begin{eqnarray}
          a_0(x)&:=&frac{m''(x)}{m(x)}+frac{a b f'(x)^2}{(f(x)-1) f(x)} +frac{m'(x)}{m(x)}left(frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
          a_1(x)&:=&frac{(a+b-c+1) f'(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
          end{eqnarray}



          Now we match the coefficients at the first derivative and solve for the function $m(x)$. Note that since $a_1(x)$ depends only on the first derivative of the function $m(x)$ we can always formally solve the resulting ODE. The solution reads:
          begin{eqnarray}
          m(x)&=& frac{sqrt{(x-4) (x-1) (x+8)} f(x)^{-c/2} sqrt{f'(x)} (1-f(x))^{frac{1}{2} (-a-b+c-1)}}{sqrt{x}} quad (II)
          end{eqnarray}

          Now all we need to do is to insert the above into the definition of $a_0(x)$ then equate the result to the coefficient at the zeroth derivative and solve for $f(x)$. This is easier said than done because the resulting differential equation is highly nonlinear.However what we can do is to assume that $f(x)$ has a particular functional form-- in this case it is a rational function and then adjust the parameters of that function such that the relevant coefficients match. This is again easier said than done because the resulting expressions quickly become unwieldy if only the degrees of the numerator and denominator get bigger than one. Therefore for the time being we only consider the old good Moebius function $f(x)=(A x+B)/(C x+D)$.
          If we insert this along with $(II)$ into $(Ia)$ we end up with a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $(x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$ and $((A-C)x+(B-D))^2$.
          Now there are only three ways for the relevant denominators to match.
          begin{eqnarray}
          left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} end{array}right) =
          left{
          left( begin{array}{r} 0\ -1 \ -4 end{array}right),
          left( begin{array}{r} 0\ -1 \ +8 end{array}right),
          left( begin{array}{r} 0\ -4 \ +8 end{array}right),
          left( begin{array}{r} -1\ -4 \ +8 end{array}right)
          right}
          end{eqnarray}

          This leads to following solutions for the function $f(x)$. We have:



          begin{eqnarray}
          f(x)=left{
          frac{3/4 x}{-1/4 x+1},
          frac{9/8 x}{1/8 x+1},
          frac{3/8 x}{1/8 x+1},
          frac{1/2 x-1/2}{1/8 x+1}
          right} quad (III)
          end{eqnarray}

          Now inserting $(III)$ along with $(II)$ into $(Ia)$ and $(Ib)$ we get:
          begin{eqnarray}
          v(x)&=&frac{1}{m(x)} left(
          C_1 F_{2,1}[a,b,c,f(x)] + C_2 f[x]^{1-c} F_{2,1}[a+1-c,b+1-c,2-c,f(x)]
          right)
          end{eqnarray}

          where
          begin{eqnarray}
          a_1(x)&=&frac{1}{x-1}-frac{1}{x}+frac{1}{x+8}+frac{1}{x-4}
          end{eqnarray}

          and
          begin{eqnarray}
          a_0(x)&=&frac{-3 a^2+18 a b-6 a c-3 b^2-6 b c+9 c^2-12 c-8}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{4 a^2-6 a b-a c+4 b^2-b c+c-2}{24 (x-4)}+frac{-a^2+2 a b-b^2}{4 (x-4)^2}+frac{-12 a b+6 a c+6 b c-8
          c^2+10 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{5}{144 (x+8)}-frac{1}{4 (x+8)^2}\
          a_0(x)&=&frac{a^2+18 a b-10 a c+b^2-10 b c+9 c^2-8 c-12}{18 (x-1)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-1)^2}+frac{-8 a^2+18 a b-a c-8 b^2-b c+c+3}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-18 a b+9 a c+9 b c-8
          c^2+7 c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}+frac{1}{12 (x-4)}-frac{1}{4 (x-4)^2}\
          a_0(x)&=&frac{a^2+6 a b-4 a c+b^2-4 b c+3 c^2-2 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+18 a b-3 a c-6 b^2-3 b c+3 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-6 a b+3 a c+3 b c-2
          c^2+c+9}{16 x}+frac{-c^2+2 c+3}{4 x^2}-frac{11}{18 (x-1)}-frac{1}{4 (x-1)^2}\
          a_0(x)&=&frac{a^2+8 a b-5 a c+b^2-5 b c+4 c^2-3 c+1}{24 (x-4)}+frac{-a^2-2 a b+2 a c-b^2+2 b c-c^2}{4 (x-4)^2}+frac{-6 a^2+16 a b-2 a c-6 b^2-2 b c+2 c+1}{144 (x+8)}+frac{-a^2+2 a b-b^2}{4 (x+8)^2}+frac{-8 a b+4 a c+4 b c-3
          c^2+2 c-11}{18 (x-1)}+frac{-c^2+2 c-1}{4 (x-1)^2}+frac{3}{4 x^2}+frac{9}{16 x}
          end{eqnarray}

          The nonbelievers can run the code below to make sure it is correct:



          Clear[m]; Clear[f]; Clear[a1]; Clear[a0]; a =.; b =.; c =.; x =.;
          m[x_] = Sqrt[(-4 + x) (-1 + x) (8 + x)]/
          Sqrt[x] (1 - f[x])^((-1 - a - b + c)/2) f[x]^(-c/2) Sqrt[f'[x]];
          f[x_] = (3/4 x)/(-1/4 x + 1);(*(0,-1,-4)*)
          f[x_] = (9/8 x)/(1/8 x + 1);(*(0,-1,+8)*)
          f[x_] = (3/8 x)/(1/8 x + 1);(*(0,-4,+8)*)
          f[x_] = (1/2 x - 1/2)/(1/8 x + 1);(*(-1,-4,+8)*)


          a0[x_] = (
          a b Derivative[1][f][x]^2)/((-1 + f[x]) f[x]) + -((
          Derivative[1][m][
          x] (c Derivative[1][f][x]^2 - f[x] Derivative[1][f][x]^2 -
          a f[x] Derivative[1][f][x]^2 - b f[x] Derivative[1][f][x]^2 -
          f[x] (f^[Prime][Prime])[x] +
          f[x]^2 (f^[Prime][Prime])[x]))/(
          m[x] (-1 + f[x]) f[x] Derivative[1][f][x])) + (
          m^[Prime][Prime])[x]/ m[x];
          a1[x_] = ((1 + a + b - c) Derivative[1][f][x])/(-1 + f[x]) + (
          c Derivative[1][f][x])/ f[x] + (2 Derivative[1][m][x])/
          m[x] - (f^[Prime][Prime])[x]/ Derivative[1][f][x];

          (Apart[Together[{a1[x], a0[x]}], x])
          FullSimplify[(D[#, {x, 2}] + a1[x] D[#, {x, 1}] + a0[x] #) & /@ {1/
          m[x] (C[1] Hypergeometric2F1[a, b, c, f[x]] +
          C[2] f[x]^(1 - c) Hypergeometric2F1[a + 1 - c, b + 1 - c, 2 - c,
          f[x]])}]


          enter image description here



          At the first glance it seems that it is not possible to match the coefficient $a_0(x)$ against that in our original ODE. The later simply contains not enough factors; for example it misses the very important factors $1/(x+8)$ and $1/(x+8)^2$.
          Therefore the lesson from this exercise is the following. In general as the complexity of our original ODE grows it will become harder and harder to match it against solutions of some known ODEs -- in this case the hypergeometric function. However we can always produce a whole family of ODEs which are close to the original one and whose solutions are known. This is what we have accomplished in here.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Nov 15 at 14:52

























          answered Nov 14 at 17:30









          Przemo

          4,1521928




          4,1521928






















              up vote
              1
              down vote













              Now again we focus our attention on the first ODE. We will follow the same line of attack as in my previous answer above except that now we start from the Heun ODE rather than from the hypergeometric one. We have:
              begin{eqnarray}
              y^{''}(x) + left( frac{c}{x} + frac{d}{x-1} + frac{a+b-c-d+1}{x-x_0} right) y^{'}(x) + frac{a b x - q}{x(x-1)(x-x_0)} y(x)=0
              end{eqnarray}



              We change the abscissa $x→f(x)$ and after that the ordinate $y(x)=m(x)v(x)$. After some straightforward calculations we end up with the following ODE:
              begin{eqnarray}
              v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
              end{eqnarray}

              where:
              begin{eqnarray}
              a_0(x)&:=&frac{m''(x)}{m(x)}+
              frac{(a b f(x)-q) f'(x)^2}{(f(x)-1) f(x) (f(x)-x_0)} +
              frac{m'(x)}{m(x)}left(frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
              a_1(x)&:=&frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
              end{eqnarray}



              Now we match the coefficient at the first derivative meaing we solve the equation $a_1(x)= 1/(x-4) + 1/(x-1)-1/x+1/(x+8)$. This is a first order ODE with respect to $m(x)$ and it can always be solved since all terms in $a_1(x)$ are total derivatives. We have:
              begin{equation}
              m(x)=sqrt{frac{(x-4) (x-1) (x+8)}{x}} (1-f(x))^{-d/2} f(x)^{-c/2} sqrt{f'(x)} (x_0-f(x))^{frac{1}{2} (-a-b+d+c-1)}
              end{equation}

              We insert the above into equation $(Ia)$ and then take our old good Moebius function $f(x):=(A x+B)/(C x+D)$. Again it is not difficult to see that $a_0(x)$ is now a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$, $((A-C)x+(B-D))^2$ and $((A-C x_0) x + (B-D x_0))^2$. Now in order to match the denominators in the coefficient in question we need to solve a following system of linear equations:
              begin{eqnarray}
              left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
              left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right)
              end{eqnarray}

              which gives $(A,B,C,D,x_0)=(-3 C,0,C,-4 C,-2)$ and
              begin{eqnarray}
              a_0(x)&=&frac{a^2+2 c (a+b)-8 a b+3 a d+b^2+3 b d-3 d-2 c+2 q+1}{24 (x-4)}+frac{-6 a^2+a (-16 b+14 d+15 c)-(6 b-8 d-9 c) (b-d-c)+2 d+3 c-2 q+1}{144 (x+8)}+frac{a (8 b-4 d)+d (-4 b+d-8 c+2)-8 q-11}{18 (x-1)}+frac{c (-3 a-3 b+9
              d+c+1)+6 q+9}{16 x}-frac{(a+b-d-c)^2}{4 (x+8)^2}-frac{(a-b)^2}{4 (x-4)^2}-frac{(d-1)^2}{4 (x-1)^2}-frac{(c-3) (c+1)}{4 x^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              All what we need to do now is to annihilate the coefficients at $1/(x+8)$, $1/(x+8)^2$, $1/(x-1)^2$ and $1/(x-4)$. Since there is five parameters $a$,$b$,$c$,$d$,$q$ and four constraints we expect to obtain one free parameter. This is indeed the case since the solution reads:
              begin{eqnarray}
              a&=&frac{1}{3}left(-1+4 b + sqrt{1-14 b+7 b^2} right)\
              c&=&frac{1}{3} left(-4+7 b+ sqrt{1-14 b+7 b^2} right)\
              d&=&1\
              q&=& frac{1}{6} left(-3+25 b-16 b^2+(3-4 b) sqrt{1-14 b+7 b^2}right)
              end{eqnarray}

              and
              begin{eqnarray}
              a_0(x)&=&-frac{7}{18} frac{Delta}{x^2}-frac{4}{9} frac{Delta}{x} + frac{4}{9} frac{Delta}{x-1} - frac{1}{18} frac{Delta}{(x-4)^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              where
              begin{equation}
              Delta := 1-8 b + 4 b^2+(b-1) sqrt{1+7(-2+b)b}
              end{equation}



              As usual I enclose a Mathematica code snippet that anyone can use to make sure that there no error in the equations above.



              In[1]:= a =.; b =.; g =.; d =.; q =.; x0 =.; x =.; Clear[m]; 
              Clear[v]; Clear[y];
              a = 1/3 (-1 + 4 b + Sqrt[1 - 14 b + 7 b^2]); g =
              1/3 (-4 + 7 b + Sqrt[1 - 14 b + 7 b^2]); d = 1; q =
              1/6 (-3 + 25 b - 16 b^2 + (3 - 4 b) Sqrt[1 - 14 b + 7 b^2]); x0 = -2;
              f[x_] = (-3 x)/(x - 4);
              m[x_] = Sqrt[((-4 + x) (-1 + x) (8 + x))/x] f[x]^(-g/2) Sqrt[
              f'[x]] (1 - f[x])^(-d/2) (x0 - f[x])^(1/2 (-a - b + d + g - 1));

              Clear[a0]; Clear[a1];
              Delta = (1 - Sqrt[1 + 7 (-2 + b) b] +
              b (-8 + 4 b + Sqrt[1 + 7 (-2 + b) b]));
              a0[x_] = -((7 Delta)/(18 x^2)) - (4 Delta)/(9 x) + (4 Delta)/(
              9 (-1 + x)) - Delta/(18 (-4 + x)^2);
              a1[x_] = 1/(-4 + x) + 1/(-1 + x) - 1/x + 1/(8 + x);

              myeqn = (D[
              y[x], {x,
              2}] + (g/x + d/(x - 1) + (a + b - g - d + 1)/(x - x0)) D[y[x],
              x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
              subst = {x :> f[x],
              Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
              Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
              1/(f'[x])^2 Derivative[2][y][x]};
              myeqn = Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x],
              y''[x]}, Simplify];
              y[x_] = m[x] v[x];
              FullSimplify[myeqn /. Derivative[2][v][x] :> -a1[x] v'[x] - a0[x] v[x]]


              Out[13]= 0


              The final conclusion of all this is that the Heun ODE can indeed be mapped onto the ODE in question(here I mean that the number of terms and their orders in each coefficient do match but the coefficients at those terms not necessarily match). As a matter of fact we even obtain a whole one parameter family of ODEs with known solutions. Unfortunately however the very particular ODE in question does not belong to this family.






              share|cite|improve this answer





















              • How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
                – doraemonpaul
                Nov 17 at 12:49










              • @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
                – Przemo
                Nov 19 at 18:46















              up vote
              1
              down vote













              Now again we focus our attention on the first ODE. We will follow the same line of attack as in my previous answer above except that now we start from the Heun ODE rather than from the hypergeometric one. We have:
              begin{eqnarray}
              y^{''}(x) + left( frac{c}{x} + frac{d}{x-1} + frac{a+b-c-d+1}{x-x_0} right) y^{'}(x) + frac{a b x - q}{x(x-1)(x-x_0)} y(x)=0
              end{eqnarray}



              We change the abscissa $x→f(x)$ and after that the ordinate $y(x)=m(x)v(x)$. After some straightforward calculations we end up with the following ODE:
              begin{eqnarray}
              v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
              end{eqnarray}

              where:
              begin{eqnarray}
              a_0(x)&:=&frac{m''(x)}{m(x)}+
              frac{(a b f(x)-q) f'(x)^2}{(f(x)-1) f(x) (f(x)-x_0)} +
              frac{m'(x)}{m(x)}left(frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
              a_1(x)&:=&frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
              end{eqnarray}



              Now we match the coefficient at the first derivative meaing we solve the equation $a_1(x)= 1/(x-4) + 1/(x-1)-1/x+1/(x+8)$. This is a first order ODE with respect to $m(x)$ and it can always be solved since all terms in $a_1(x)$ are total derivatives. We have:
              begin{equation}
              m(x)=sqrt{frac{(x-4) (x-1) (x+8)}{x}} (1-f(x))^{-d/2} f(x)^{-c/2} sqrt{f'(x)} (x_0-f(x))^{frac{1}{2} (-a-b+d+c-1)}
              end{equation}

              We insert the above into equation $(Ia)$ and then take our old good Moebius function $f(x):=(A x+B)/(C x+D)$. Again it is not difficult to see that $a_0(x)$ is now a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$, $((A-C)x+(B-D))^2$ and $((A-C x_0) x + (B-D x_0))^2$. Now in order to match the denominators in the coefficient in question we need to solve a following system of linear equations:
              begin{eqnarray}
              left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
              left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right)
              end{eqnarray}

              which gives $(A,B,C,D,x_0)=(-3 C,0,C,-4 C,-2)$ and
              begin{eqnarray}
              a_0(x)&=&frac{a^2+2 c (a+b)-8 a b+3 a d+b^2+3 b d-3 d-2 c+2 q+1}{24 (x-4)}+frac{-6 a^2+a (-16 b+14 d+15 c)-(6 b-8 d-9 c) (b-d-c)+2 d+3 c-2 q+1}{144 (x+8)}+frac{a (8 b-4 d)+d (-4 b+d-8 c+2)-8 q-11}{18 (x-1)}+frac{c (-3 a-3 b+9
              d+c+1)+6 q+9}{16 x}-frac{(a+b-d-c)^2}{4 (x+8)^2}-frac{(a-b)^2}{4 (x-4)^2}-frac{(d-1)^2}{4 (x-1)^2}-frac{(c-3) (c+1)}{4 x^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              All what we need to do now is to annihilate the coefficients at $1/(x+8)$, $1/(x+8)^2$, $1/(x-1)^2$ and $1/(x-4)$. Since there is five parameters $a$,$b$,$c$,$d$,$q$ and four constraints we expect to obtain one free parameter. This is indeed the case since the solution reads:
              begin{eqnarray}
              a&=&frac{1}{3}left(-1+4 b + sqrt{1-14 b+7 b^2} right)\
              c&=&frac{1}{3} left(-4+7 b+ sqrt{1-14 b+7 b^2} right)\
              d&=&1\
              q&=& frac{1}{6} left(-3+25 b-16 b^2+(3-4 b) sqrt{1-14 b+7 b^2}right)
              end{eqnarray}

              and
              begin{eqnarray}
              a_0(x)&=&-frac{7}{18} frac{Delta}{x^2}-frac{4}{9} frac{Delta}{x} + frac{4}{9} frac{Delta}{x-1} - frac{1}{18} frac{Delta}{(x-4)^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              where
              begin{equation}
              Delta := 1-8 b + 4 b^2+(b-1) sqrt{1+7(-2+b)b}
              end{equation}



              As usual I enclose a Mathematica code snippet that anyone can use to make sure that there no error in the equations above.



              In[1]:= a =.; b =.; g =.; d =.; q =.; x0 =.; x =.; Clear[m]; 
              Clear[v]; Clear[y];
              a = 1/3 (-1 + 4 b + Sqrt[1 - 14 b + 7 b^2]); g =
              1/3 (-4 + 7 b + Sqrt[1 - 14 b + 7 b^2]); d = 1; q =
              1/6 (-3 + 25 b - 16 b^2 + (3 - 4 b) Sqrt[1 - 14 b + 7 b^2]); x0 = -2;
              f[x_] = (-3 x)/(x - 4);
              m[x_] = Sqrt[((-4 + x) (-1 + x) (8 + x))/x] f[x]^(-g/2) Sqrt[
              f'[x]] (1 - f[x])^(-d/2) (x0 - f[x])^(1/2 (-a - b + d + g - 1));

              Clear[a0]; Clear[a1];
              Delta = (1 - Sqrt[1 + 7 (-2 + b) b] +
              b (-8 + 4 b + Sqrt[1 + 7 (-2 + b) b]));
              a0[x_] = -((7 Delta)/(18 x^2)) - (4 Delta)/(9 x) + (4 Delta)/(
              9 (-1 + x)) - Delta/(18 (-4 + x)^2);
              a1[x_] = 1/(-4 + x) + 1/(-1 + x) - 1/x + 1/(8 + x);

              myeqn = (D[
              y[x], {x,
              2}] + (g/x + d/(x - 1) + (a + b - g - d + 1)/(x - x0)) D[y[x],
              x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
              subst = {x :> f[x],
              Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
              Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
              1/(f'[x])^2 Derivative[2][y][x]};
              myeqn = Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x],
              y''[x]}, Simplify];
              y[x_] = m[x] v[x];
              FullSimplify[myeqn /. Derivative[2][v][x] :> -a1[x] v'[x] - a0[x] v[x]]


              Out[13]= 0


              The final conclusion of all this is that the Heun ODE can indeed be mapped onto the ODE in question(here I mean that the number of terms and their orders in each coefficient do match but the coefficients at those terms not necessarily match). As a matter of fact we even obtain a whole one parameter family of ODEs with known solutions. Unfortunately however the very particular ODE in question does not belong to this family.






              share|cite|improve this answer





















              • How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
                – doraemonpaul
                Nov 17 at 12:49










              • @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
                – Przemo
                Nov 19 at 18:46













              up vote
              1
              down vote










              up vote
              1
              down vote









              Now again we focus our attention on the first ODE. We will follow the same line of attack as in my previous answer above except that now we start from the Heun ODE rather than from the hypergeometric one. We have:
              begin{eqnarray}
              y^{''}(x) + left( frac{c}{x} + frac{d}{x-1} + frac{a+b-c-d+1}{x-x_0} right) y^{'}(x) + frac{a b x - q}{x(x-1)(x-x_0)} y(x)=0
              end{eqnarray}



              We change the abscissa $x→f(x)$ and after that the ordinate $y(x)=m(x)v(x)$. After some straightforward calculations we end up with the following ODE:
              begin{eqnarray}
              v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
              end{eqnarray}

              where:
              begin{eqnarray}
              a_0(x)&:=&frac{m''(x)}{m(x)}+
              frac{(a b f(x)-q) f'(x)^2}{(f(x)-1) f(x) (f(x)-x_0)} +
              frac{m'(x)}{m(x)}left(frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
              a_1(x)&:=&frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
              end{eqnarray}



              Now we match the coefficient at the first derivative meaing we solve the equation $a_1(x)= 1/(x-4) + 1/(x-1)-1/x+1/(x+8)$. This is a first order ODE with respect to $m(x)$ and it can always be solved since all terms in $a_1(x)$ are total derivatives. We have:
              begin{equation}
              m(x)=sqrt{frac{(x-4) (x-1) (x+8)}{x}} (1-f(x))^{-d/2} f(x)^{-c/2} sqrt{f'(x)} (x_0-f(x))^{frac{1}{2} (-a-b+d+c-1)}
              end{equation}

              We insert the above into equation $(Ia)$ and then take our old good Moebius function $f(x):=(A x+B)/(C x+D)$. Again it is not difficult to see that $a_0(x)$ is now a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$, $((A-C)x+(B-D))^2$ and $((A-C x_0) x + (B-D x_0))^2$. Now in order to match the denominators in the coefficient in question we need to solve a following system of linear equations:
              begin{eqnarray}
              left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
              left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right)
              end{eqnarray}

              which gives $(A,B,C,D,x_0)=(-3 C,0,C,-4 C,-2)$ and
              begin{eqnarray}
              a_0(x)&=&frac{a^2+2 c (a+b)-8 a b+3 a d+b^2+3 b d-3 d-2 c+2 q+1}{24 (x-4)}+frac{-6 a^2+a (-16 b+14 d+15 c)-(6 b-8 d-9 c) (b-d-c)+2 d+3 c-2 q+1}{144 (x+8)}+frac{a (8 b-4 d)+d (-4 b+d-8 c+2)-8 q-11}{18 (x-1)}+frac{c (-3 a-3 b+9
              d+c+1)+6 q+9}{16 x}-frac{(a+b-d-c)^2}{4 (x+8)^2}-frac{(a-b)^2}{4 (x-4)^2}-frac{(d-1)^2}{4 (x-1)^2}-frac{(c-3) (c+1)}{4 x^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              All what we need to do now is to annihilate the coefficients at $1/(x+8)$, $1/(x+8)^2$, $1/(x-1)^2$ and $1/(x-4)$. Since there is five parameters $a$,$b$,$c$,$d$,$q$ and four constraints we expect to obtain one free parameter. This is indeed the case since the solution reads:
              begin{eqnarray}
              a&=&frac{1}{3}left(-1+4 b + sqrt{1-14 b+7 b^2} right)\
              c&=&frac{1}{3} left(-4+7 b+ sqrt{1-14 b+7 b^2} right)\
              d&=&1\
              q&=& frac{1}{6} left(-3+25 b-16 b^2+(3-4 b) sqrt{1-14 b+7 b^2}right)
              end{eqnarray}

              and
              begin{eqnarray}
              a_0(x)&=&-frac{7}{18} frac{Delta}{x^2}-frac{4}{9} frac{Delta}{x} + frac{4}{9} frac{Delta}{x-1} - frac{1}{18} frac{Delta}{(x-4)^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              where
              begin{equation}
              Delta := 1-8 b + 4 b^2+(b-1) sqrt{1+7(-2+b)b}
              end{equation}



              As usual I enclose a Mathematica code snippet that anyone can use to make sure that there no error in the equations above.



              In[1]:= a =.; b =.; g =.; d =.; q =.; x0 =.; x =.; Clear[m]; 
              Clear[v]; Clear[y];
              a = 1/3 (-1 + 4 b + Sqrt[1 - 14 b + 7 b^2]); g =
              1/3 (-4 + 7 b + Sqrt[1 - 14 b + 7 b^2]); d = 1; q =
              1/6 (-3 + 25 b - 16 b^2 + (3 - 4 b) Sqrt[1 - 14 b + 7 b^2]); x0 = -2;
              f[x_] = (-3 x)/(x - 4);
              m[x_] = Sqrt[((-4 + x) (-1 + x) (8 + x))/x] f[x]^(-g/2) Sqrt[
              f'[x]] (1 - f[x])^(-d/2) (x0 - f[x])^(1/2 (-a - b + d + g - 1));

              Clear[a0]; Clear[a1];
              Delta = (1 - Sqrt[1 + 7 (-2 + b) b] +
              b (-8 + 4 b + Sqrt[1 + 7 (-2 + b) b]));
              a0[x_] = -((7 Delta)/(18 x^2)) - (4 Delta)/(9 x) + (4 Delta)/(
              9 (-1 + x)) - Delta/(18 (-4 + x)^2);
              a1[x_] = 1/(-4 + x) + 1/(-1 + x) - 1/x + 1/(8 + x);

              myeqn = (D[
              y[x], {x,
              2}] + (g/x + d/(x - 1) + (a + b - g - d + 1)/(x - x0)) D[y[x],
              x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
              subst = {x :> f[x],
              Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
              Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
              1/(f'[x])^2 Derivative[2][y][x]};
              myeqn = Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x],
              y''[x]}, Simplify];
              y[x_] = m[x] v[x];
              FullSimplify[myeqn /. Derivative[2][v][x] :> -a1[x] v'[x] - a0[x] v[x]]


              Out[13]= 0


              The final conclusion of all this is that the Heun ODE can indeed be mapped onto the ODE in question(here I mean that the number of terms and their orders in each coefficient do match but the coefficients at those terms not necessarily match). As a matter of fact we even obtain a whole one parameter family of ODEs with known solutions. Unfortunately however the very particular ODE in question does not belong to this family.






              share|cite|improve this answer












              Now again we focus our attention on the first ODE. We will follow the same line of attack as in my previous answer above except that now we start from the Heun ODE rather than from the hypergeometric one. We have:
              begin{eqnarray}
              y^{''}(x) + left( frac{c}{x} + frac{d}{x-1} + frac{a+b-c-d+1}{x-x_0} right) y^{'}(x) + frac{a b x - q}{x(x-1)(x-x_0)} y(x)=0
              end{eqnarray}



              We change the abscissa $x→f(x)$ and after that the ordinate $y(x)=m(x)v(x)$. After some straightforward calculations we end up with the following ODE:
              begin{eqnarray}
              v^{''}(x) + a_1(x) v^{'}(x) + a_0(x) v(x)=0
              end{eqnarray}

              where:
              begin{eqnarray}
              a_0(x)&:=&frac{m''(x)}{m(x)}+
              frac{(a b f(x)-q) f'(x)^2}{(f(x)-1) f(x) (f(x)-x_0)} +
              frac{m'(x)}{m(x)}left(frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}right) quad (Ia)\
              a_1(x)&:=&frac{(a+b-c-d+1) f'(x)}{f(x)-x_0}+d frac{f^{'}(x)}{f(x)-1}+frac{c f'(x)}{f(x)}-frac{f''(x)}{f'(x)}+frac{2 m'(x)}{m(x)} quad(Ib)
              end{eqnarray}



              Now we match the coefficient at the first derivative meaing we solve the equation $a_1(x)= 1/(x-4) + 1/(x-1)-1/x+1/(x+8)$. This is a first order ODE with respect to $m(x)$ and it can always be solved since all terms in $a_1(x)$ are total derivatives. We have:
              begin{equation}
              m(x)=sqrt{frac{(x-4) (x-1) (x+8)}{x}} (1-f(x))^{-d/2} f(x)^{-c/2} sqrt{f'(x)} (x_0-f(x))^{frac{1}{2} (-a-b+d+c-1)}
              end{equation}

              We insert the above into equation $(Ia)$ and then take our old good Moebius function $f(x):=(A x+B)/(C x+D)$. Again it is not difficult to see that $a_0(x)$ is now a rational function which has the following factors in the denominator, firstly $x^2$, $(x-1)^2$, $(x-4)^2$ and $x+8)^2$ and secondly $(A x+B)^2$, $(C x+D)^2$, $((A-C)x+(B-D))^2$ and $((A-C x_0) x + (B-D x_0))^2$. Now in order to match the denominators in the coefficient in question we need to solve a following system of linear equations:
              begin{eqnarray}
              left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
              left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right)
              end{eqnarray}

              which gives $(A,B,C,D,x_0)=(-3 C,0,C,-4 C,-2)$ and
              begin{eqnarray}
              a_0(x)&=&frac{a^2+2 c (a+b)-8 a b+3 a d+b^2+3 b d-3 d-2 c+2 q+1}{24 (x-4)}+frac{-6 a^2+a (-16 b+14 d+15 c)-(6 b-8 d-9 c) (b-d-c)+2 d+3 c-2 q+1}{144 (x+8)}+frac{a (8 b-4 d)+d (-4 b+d-8 c+2)-8 q-11}{18 (x-1)}+frac{c (-3 a-3 b+9
              d+c+1)+6 q+9}{16 x}-frac{(a+b-d-c)^2}{4 (x+8)^2}-frac{(a-b)^2}{4 (x-4)^2}-frac{(d-1)^2}{4 (x-1)^2}-frac{(c-3) (c+1)}{4 x^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              All what we need to do now is to annihilate the coefficients at $1/(x+8)$, $1/(x+8)^2$, $1/(x-1)^2$ and $1/(x-4)$. Since there is five parameters $a$,$b$,$c$,$d$,$q$ and four constraints we expect to obtain one free parameter. This is indeed the case since the solution reads:
              begin{eqnarray}
              a&=&frac{1}{3}left(-1+4 b + sqrt{1-14 b+7 b^2} right)\
              c&=&frac{1}{3} left(-4+7 b+ sqrt{1-14 b+7 b^2} right)\
              d&=&1\
              q&=& frac{1}{6} left(-3+25 b-16 b^2+(3-4 b) sqrt{1-14 b+7 b^2}right)
              end{eqnarray}

              and
              begin{eqnarray}
              a_0(x)&=&-frac{7}{18} frac{Delta}{x^2}-frac{4}{9} frac{Delta}{x} + frac{4}{9} frac{Delta}{x-1} - frac{1}{18} frac{Delta}{(x-4)^2}\
              a_1(x)&=&frac{1}{x+8}-frac{1}{x}+frac{1}{x-1}+frac{1}{x-4}
              end{eqnarray}

              where
              begin{equation}
              Delta := 1-8 b + 4 b^2+(b-1) sqrt{1+7(-2+b)b}
              end{equation}



              As usual I enclose a Mathematica code snippet that anyone can use to make sure that there no error in the equations above.



              In[1]:= a =.; b =.; g =.; d =.; q =.; x0 =.; x =.; Clear[m]; 
              Clear[v]; Clear[y];
              a = 1/3 (-1 + 4 b + Sqrt[1 - 14 b + 7 b^2]); g =
              1/3 (-4 + 7 b + Sqrt[1 - 14 b + 7 b^2]); d = 1; q =
              1/6 (-3 + 25 b - 16 b^2 + (3 - 4 b) Sqrt[1 - 14 b + 7 b^2]); x0 = -2;
              f[x_] = (-3 x)/(x - 4);
              m[x_] = Sqrt[((-4 + x) (-1 + x) (8 + x))/x] f[x]^(-g/2) Sqrt[
              f'[x]] (1 - f[x])^(-d/2) (x0 - f[x])^(1/2 (-a - b + d + g - 1));

              Clear[a0]; Clear[a1];
              Delta = (1 - Sqrt[1 + 7 (-2 + b) b] +
              b (-8 + 4 b + Sqrt[1 + 7 (-2 + b) b]));
              a0[x_] = -((7 Delta)/(18 x^2)) - (4 Delta)/(9 x) + (4 Delta)/(
              9 (-1 + x)) - Delta/(18 (-4 + x)^2);
              a1[x_] = 1/(-4 + x) + 1/(-1 + x) - 1/x + 1/(8 + x);

              myeqn = (D[
              y[x], {x,
              2}] + (g/x + d/(x - 1) + (a + b - g - d + 1)/(x - x0)) D[y[x],
              x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
              subst = {x :> f[x],
              Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
              Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
              1/(f'[x])^2 Derivative[2][y][x]};
              myeqn = Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x],
              y''[x]}, Simplify];
              y[x_] = m[x] v[x];
              FullSimplify[myeqn /. Derivative[2][v][x] :> -a1[x] v'[x] - a0[x] v[x]]


              Out[13]= 0


              The final conclusion of all this is that the Heun ODE can indeed be mapped onto the ODE in question(here I mean that the number of terms and their orders in each coefficient do match but the coefficients at those terms not necessarily match). As a matter of fact we even obtain a whole one parameter family of ODEs with known solutions. Unfortunately however the very particular ODE in question does not belong to this family.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Nov 15 at 15:59









              Przemo

              4,1521928




              4,1521928












              • How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
                – doraemonpaul
                Nov 17 at 12:49










              • @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
                – Przemo
                Nov 19 at 18:46


















              • How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
                – doraemonpaul
                Nov 17 at 12:49










              • @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
                – Przemo
                Nov 19 at 18:46
















              How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
              – doraemonpaul
              Nov 17 at 12:49




              How are the differences of effects applying this approach when considering $dfrac{d^2y}{dx^2}+bigg(dfrac{1}{x+8}-dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x-4}bigg)dfrac{dy}{dx}+bigg(dfrac{1}{x^2}+dfrac{3}{4x}-dfrac{5}{6(x-1)}-dfrac{1}{4(x-4)^2}bigg)y=0$ VS $dfrac{d^2u}{dx^2}+left(dfrac{1}{x}+dfrac{1}{x-1}+dfrac{1}{x+8}right)dfrac{du}{dx}-left(dfrac{1}{4x}-dfrac{1}{3(x-1)}+dfrac{1}{12(x-4)}+dfrac{1}{12(x+8)}right)u=0$ ?
              – doraemonpaul
              Nov 17 at 12:49












              @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
              – Przemo
              Nov 19 at 18:46




              @ doraemonpaul I have added a new answer. See below. By the way is there any reason why you chose that particular form of ODEs? In other words is there any rationale behind the particular values of the integer coefficients in the ODE ?
              – Przemo
              Nov 19 at 18:46










              up vote
              1
              down vote













              This is an answer to the comment posted by doraemonpaul . The question is to find solutions and possibly outline differences in finding those solutions to the first ODE above. The new ODE reads:
              begin{eqnarray}
              frac{d^2 v(x)}{d x^2} +underbrace{left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right)}_{a_1(x)} frac{d v(x)}{d x} - left( frac{1}{4 x} - frac{1}{3(x-1)} + frac{1}{12(x-4)} + frac{1}{12(x+8)}right)v(x)=0
              end{eqnarray}

              In here we start from the Heun ODE and as usual we change the dependent variable $xrightarrow f(x)$ and then the independent variable $y(x)=m(x) v(x)$ and then we choose the function $m(x)$ so that the coefficients at the first derivative match. This gives:
              begin{equation}
              m(x)=sqrt{x(x-1)(x+8)} (1-f(x))^{-d/2} f[x]^{-c/2} sqrt{f^{'}(x)} (x_0-f(x))^{1/2(-a-b+c+d-1)}
              end{equation}

              and
              begin{eqnarray}
              &&frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(right.\
              &&left. frac{f'(x)^2 left(-a^2-2 a (b-c-d)-b^2+2 b (c+d)-c^2-2 c d-d^2+1right)}{4 (x_0-f(x))^2}right.+\
              &&frac{f'(x)^2 left(c (a (x_0-1)+b (x_0-1)-2 d x_0+d+x_0-1)+x_0 (a (d-2 b)+d (b-d+1))+c^2 (-(x_0-1))+2 qright)}{2 (x_0-1) x_0 (x_0-f(x))}+\
              &&frac{(2-d) d f'(x)^2}{4 (f(x)-1)^2}+\
              &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
              &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
              &&frac{f'(x)^2 left(c (a+b+d x_0-d+1)-c^2-2 qright)}{2 x_0 f(x)}+\
              &&frac{1}{4} left(2 a_1'(x)+a_1(x)^2+underbrace{frac{2 f^{(3)}(x) f'(x)-3 f''(x)^2}{f'(x)^2}}_{mbox{Schwarzian derivative}}right)\
              &&left.right)v(x)=0
              end{eqnarray}

              Now we take the good old Moebius function $f(x)=(A x+B)/(C x+D)$ (note that this anihilates the Schwarzian derivative in the last term in parentheses above) and we choose the upper case constants in the usual way i.e. via
              begin{eqnarray}
              left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
              left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right) odot pi
              end{eqnarray}

              where $pi$ is a permutation of length four. Having done this we decompose into partial fractions the coefficient at the zeroth derivative and then we anihilate the terms being proportional to second powers. This gives us four equations with five unknowns so we expect to get one free parameter. This is indeed the case. One of the twenty four cases reads:
              begin{eqnarray}
              frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(frac{11-24 q}{18 (x-1)}+frac{6 q-frac{3}{2}}{24 (x-4)}+frac{18 q-8}{16 x}+frac{-6 q-7}{144 (x+8)}right) v(x)=0
              end{eqnarray}

              where
              begin{eqnarray}
              v(x)=frac{1}{m(x)} left(
              C_1 cdot Hnleft(
              begin{array}{r|rr|}
              x_0 & a & b \
              q & c & d
              end{array}
              f(x)
              right) +
              C_2 cdot [f(x)]^{1-c} Hnleft(
              begin{array}{r|rr|}
              x_0 & a+1-c & b+1-c \
              q_1 & 2-c & d
              end{array}
              f(x)
              right)
              right)
              end{eqnarray}

              where $q_1=q-(c-1)(a+b-c-d+d x_0 +1)$
              and $(a,b,c,d,q)=(1/2,1/2,1,0,q)$ and $x_0=2/3$ and $f(x)=(3 x)/(4(x-1))$.



              A =.; B =.; CC =.; DD =.; x0 =.;
              a =.; b =.; c =.; d =.; q =.;
              A1[x_] = 1/x + 1/(x - 1) + 1/(x + 8);

              perm = Permutations[{1, 2, 3, 4}];
              sol = Table[{A, B, CC, DD, x0} /.
              Solve[{B/A,
              DD/CC, (B - DD)/(A - CC), (B - DD x0)/(A -
              CC x0)} == {0, -1, -4, 8}[[perm[[j]]]]], {j, 1, 24}];
              MatrixForm[sol]; myList = {};
              Do[
              A =.; B =.; CC =.; DD =.; x0 =.;
              a =.; b =.; c =.; d =.; q =.;
              {A, B, CC, DD, x0} = First[sol[[which]]];
              f[x_] = Simplify[(A x + B)/(CC x + DD)];
              m[x_] = Sqrt[x (x - 1) (x + 8)] (1 - f[x])^(-d/2) f[x]^(-c/2) Sqrt[
              f'[x]] (x0 - f[x])^(1/2 (-a - b + d + c - 1));
              A0[x_] =
              Apart[Together[-(-1 + a^2 + b^2 + c^2 + 2 a (b - c - d) + 2 c d +
              d^2 - 2 b (c + d)) (Derivative[1][f][x]^2)/(
              4 (x0 - f[x])^2) + (2 q -
              c^2 (-1 + x0) + ((1 + b - d) d + a (-2 b + d)) x0 +
              c (-1 + d + a (-1 + x0) + b (-1 + x0) + x0 - 2 d x0)) (
              Derivative[1][f][x]^2)/(
              2 (-1 + x0) x0 (x0 - f[x])) - (-2 + d) d Derivative[1][f][x]^2/(
              4 (-1 + f[x])^2) + (-d^2 + a (-2 b + d) + 2 q +
              d (1 + b - c x0)) (Derivative[1][f][x]^2)/(
              2 (-1 + x0) (-1 + f[x])) - (-2 + c) c (Derivative[1][f][x]^2)/(
              4 f[x]^2) + (-c^2 - 2 q + c (1 + a + b - d + d x0)) (
              Derivative[1][f][x]^2)/(2 x0 f[x]) +
              1/4 (A1[x]^2 +
              2 Derivative[1][A1][x] + (-3 (f^[Prime][Prime])[x]^2 +
              2 Derivative[1][f][x]
              !(*SuperscriptBox[(f),
              TagBox[
              RowBox[{"(", "3", ")"}],
              Derivative],
              MultilineFunction->None])[x])/Derivative[1][f][x]^2)], x];
              eX = A0[x];
              subst = {a, b, c, d} /.
              Solve[{Coefficient[eX, x, -2], Coefficient[eX, 1/(x - 1)^2],
              Coefficient[eX, 1/(x - 4)^2],
              Coefficient[eX, 1/(x + 8)^2]} == {0, 0, 0, 0}];
              {a, b, c, d} = subst[[1]];
              Clear[v]; Clear[y];
              myeqn = (D[
              y[x], {x,
              2}] + (c/x + d/(x - 1) + (a + b - c - d + 1)/(x - x0)) D[y[x],
              x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
              subst = {x :> f[x],
              Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
              Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
              1/(f'[x])^2 Derivative[2][y][x]};
              myeqn =
              Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x], y''[x]},
              Simplify];
              y[x_] = m[x] v[x];
              eX = FullSimplify[
              myeqn /. Derivative[2][v][x] :> -A1[x] v'[x] - A0[x] v[x]];
              myList = Join[myList, {{f[x], x0}}];
              Print[{eX, A0[x], {a, b, c, d, q}, x0, f[x]}];
              , {which, 1, 24}]


              enter image description here



              To summarize this ODE is indeed different from the first one on top of this webpage in that in here we obtained twenty four different exactly solvable cases whereas in the other case all the twenty four cases turn out to be the same.






              share|cite|improve this answer

























                up vote
                1
                down vote













                This is an answer to the comment posted by doraemonpaul . The question is to find solutions and possibly outline differences in finding those solutions to the first ODE above. The new ODE reads:
                begin{eqnarray}
                frac{d^2 v(x)}{d x^2} +underbrace{left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right)}_{a_1(x)} frac{d v(x)}{d x} - left( frac{1}{4 x} - frac{1}{3(x-1)} + frac{1}{12(x-4)} + frac{1}{12(x+8)}right)v(x)=0
                end{eqnarray}

                In here we start from the Heun ODE and as usual we change the dependent variable $xrightarrow f(x)$ and then the independent variable $y(x)=m(x) v(x)$ and then we choose the function $m(x)$ so that the coefficients at the first derivative match. This gives:
                begin{equation}
                m(x)=sqrt{x(x-1)(x+8)} (1-f(x))^{-d/2} f[x]^{-c/2} sqrt{f^{'}(x)} (x_0-f(x))^{1/2(-a-b+c+d-1)}
                end{equation}

                and
                begin{eqnarray}
                &&frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(right.\
                &&left. frac{f'(x)^2 left(-a^2-2 a (b-c-d)-b^2+2 b (c+d)-c^2-2 c d-d^2+1right)}{4 (x_0-f(x))^2}right.+\
                &&frac{f'(x)^2 left(c (a (x_0-1)+b (x_0-1)-2 d x_0+d+x_0-1)+x_0 (a (d-2 b)+d (b-d+1))+c^2 (-(x_0-1))+2 qright)}{2 (x_0-1) x_0 (x_0-f(x))}+\
                &&frac{(2-d) d f'(x)^2}{4 (f(x)-1)^2}+\
                &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                &&frac{f'(x)^2 left(c (a+b+d x_0-d+1)-c^2-2 qright)}{2 x_0 f(x)}+\
                &&frac{1}{4} left(2 a_1'(x)+a_1(x)^2+underbrace{frac{2 f^{(3)}(x) f'(x)-3 f''(x)^2}{f'(x)^2}}_{mbox{Schwarzian derivative}}right)\
                &&left.right)v(x)=0
                end{eqnarray}

                Now we take the good old Moebius function $f(x)=(A x+B)/(C x+D)$ (note that this anihilates the Schwarzian derivative in the last term in parentheses above) and we choose the upper case constants in the usual way i.e. via
                begin{eqnarray}
                left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
                left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right) odot pi
                end{eqnarray}

                where $pi$ is a permutation of length four. Having done this we decompose into partial fractions the coefficient at the zeroth derivative and then we anihilate the terms being proportional to second powers. This gives us four equations with five unknowns so we expect to get one free parameter. This is indeed the case. One of the twenty four cases reads:
                begin{eqnarray}
                frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(frac{11-24 q}{18 (x-1)}+frac{6 q-frac{3}{2}}{24 (x-4)}+frac{18 q-8}{16 x}+frac{-6 q-7}{144 (x+8)}right) v(x)=0
                end{eqnarray}

                where
                begin{eqnarray}
                v(x)=frac{1}{m(x)} left(
                C_1 cdot Hnleft(
                begin{array}{r|rr|}
                x_0 & a & b \
                q & c & d
                end{array}
                f(x)
                right) +
                C_2 cdot [f(x)]^{1-c} Hnleft(
                begin{array}{r|rr|}
                x_0 & a+1-c & b+1-c \
                q_1 & 2-c & d
                end{array}
                f(x)
                right)
                right)
                end{eqnarray}

                where $q_1=q-(c-1)(a+b-c-d+d x_0 +1)$
                and $(a,b,c,d,q)=(1/2,1/2,1,0,q)$ and $x_0=2/3$ and $f(x)=(3 x)/(4(x-1))$.



                A =.; B =.; CC =.; DD =.; x0 =.;
                a =.; b =.; c =.; d =.; q =.;
                A1[x_] = 1/x + 1/(x - 1) + 1/(x + 8);

                perm = Permutations[{1, 2, 3, 4}];
                sol = Table[{A, B, CC, DD, x0} /.
                Solve[{B/A,
                DD/CC, (B - DD)/(A - CC), (B - DD x0)/(A -
                CC x0)} == {0, -1, -4, 8}[[perm[[j]]]]], {j, 1, 24}];
                MatrixForm[sol]; myList = {};
                Do[
                A =.; B =.; CC =.; DD =.; x0 =.;
                a =.; b =.; c =.; d =.; q =.;
                {A, B, CC, DD, x0} = First[sol[[which]]];
                f[x_] = Simplify[(A x + B)/(CC x + DD)];
                m[x_] = Sqrt[x (x - 1) (x + 8)] (1 - f[x])^(-d/2) f[x]^(-c/2) Sqrt[
                f'[x]] (x0 - f[x])^(1/2 (-a - b + d + c - 1));
                A0[x_] =
                Apart[Together[-(-1 + a^2 + b^2 + c^2 + 2 a (b - c - d) + 2 c d +
                d^2 - 2 b (c + d)) (Derivative[1][f][x]^2)/(
                4 (x0 - f[x])^2) + (2 q -
                c^2 (-1 + x0) + ((1 + b - d) d + a (-2 b + d)) x0 +
                c (-1 + d + a (-1 + x0) + b (-1 + x0) + x0 - 2 d x0)) (
                Derivative[1][f][x]^2)/(
                2 (-1 + x0) x0 (x0 - f[x])) - (-2 + d) d Derivative[1][f][x]^2/(
                4 (-1 + f[x])^2) + (-d^2 + a (-2 b + d) + 2 q +
                d (1 + b - c x0)) (Derivative[1][f][x]^2)/(
                2 (-1 + x0) (-1 + f[x])) - (-2 + c) c (Derivative[1][f][x]^2)/(
                4 f[x]^2) + (-c^2 - 2 q + c (1 + a + b - d + d x0)) (
                Derivative[1][f][x]^2)/(2 x0 f[x]) +
                1/4 (A1[x]^2 +
                2 Derivative[1][A1][x] + (-3 (f^[Prime][Prime])[x]^2 +
                2 Derivative[1][f][x]
                !(*SuperscriptBox[(f),
                TagBox[
                RowBox[{"(", "3", ")"}],
                Derivative],
                MultilineFunction->None])[x])/Derivative[1][f][x]^2)], x];
                eX = A0[x];
                subst = {a, b, c, d} /.
                Solve[{Coefficient[eX, x, -2], Coefficient[eX, 1/(x - 1)^2],
                Coefficient[eX, 1/(x - 4)^2],
                Coefficient[eX, 1/(x + 8)^2]} == {0, 0, 0, 0}];
                {a, b, c, d} = subst[[1]];
                Clear[v]; Clear[y];
                myeqn = (D[
                y[x], {x,
                2}] + (c/x + d/(x - 1) + (a + b - c - d + 1)/(x - x0)) D[y[x],
                x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
                subst = {x :> f[x],
                Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
                Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
                1/(f'[x])^2 Derivative[2][y][x]};
                myeqn =
                Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x], y''[x]},
                Simplify];
                y[x_] = m[x] v[x];
                eX = FullSimplify[
                myeqn /. Derivative[2][v][x] :> -A1[x] v'[x] - A0[x] v[x]];
                myList = Join[myList, {{f[x], x0}}];
                Print[{eX, A0[x], {a, b, c, d, q}, x0, f[x]}];
                , {which, 1, 24}]


                enter image description here



                To summarize this ODE is indeed different from the first one on top of this webpage in that in here we obtained twenty four different exactly solvable cases whereas in the other case all the twenty four cases turn out to be the same.






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  This is an answer to the comment posted by doraemonpaul . The question is to find solutions and possibly outline differences in finding those solutions to the first ODE above. The new ODE reads:
                  begin{eqnarray}
                  frac{d^2 v(x)}{d x^2} +underbrace{left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right)}_{a_1(x)} frac{d v(x)}{d x} - left( frac{1}{4 x} - frac{1}{3(x-1)} + frac{1}{12(x-4)} + frac{1}{12(x+8)}right)v(x)=0
                  end{eqnarray}

                  In here we start from the Heun ODE and as usual we change the dependent variable $xrightarrow f(x)$ and then the independent variable $y(x)=m(x) v(x)$ and then we choose the function $m(x)$ so that the coefficients at the first derivative match. This gives:
                  begin{equation}
                  m(x)=sqrt{x(x-1)(x+8)} (1-f(x))^{-d/2} f[x]^{-c/2} sqrt{f^{'}(x)} (x_0-f(x))^{1/2(-a-b+c+d-1)}
                  end{equation}

                  and
                  begin{eqnarray}
                  &&frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(right.\
                  &&left. frac{f'(x)^2 left(-a^2-2 a (b-c-d)-b^2+2 b (c+d)-c^2-2 c d-d^2+1right)}{4 (x_0-f(x))^2}right.+\
                  &&frac{f'(x)^2 left(c (a (x_0-1)+b (x_0-1)-2 d x_0+d+x_0-1)+x_0 (a (d-2 b)+d (b-d+1))+c^2 (-(x_0-1))+2 qright)}{2 (x_0-1) x_0 (x_0-f(x))}+\
                  &&frac{(2-d) d f'(x)^2}{4 (f(x)-1)^2}+\
                  &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                  &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                  &&frac{f'(x)^2 left(c (a+b+d x_0-d+1)-c^2-2 qright)}{2 x_0 f(x)}+\
                  &&frac{1}{4} left(2 a_1'(x)+a_1(x)^2+underbrace{frac{2 f^{(3)}(x) f'(x)-3 f''(x)^2}{f'(x)^2}}_{mbox{Schwarzian derivative}}right)\
                  &&left.right)v(x)=0
                  end{eqnarray}

                  Now we take the good old Moebius function $f(x)=(A x+B)/(C x+D)$ (note that this anihilates the Schwarzian derivative in the last term in parentheses above) and we choose the upper case constants in the usual way i.e. via
                  begin{eqnarray}
                  left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
                  left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right) odot pi
                  end{eqnarray}

                  where $pi$ is a permutation of length four. Having done this we decompose into partial fractions the coefficient at the zeroth derivative and then we anihilate the terms being proportional to second powers. This gives us four equations with five unknowns so we expect to get one free parameter. This is indeed the case. One of the twenty four cases reads:
                  begin{eqnarray}
                  frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(frac{11-24 q}{18 (x-1)}+frac{6 q-frac{3}{2}}{24 (x-4)}+frac{18 q-8}{16 x}+frac{-6 q-7}{144 (x+8)}right) v(x)=0
                  end{eqnarray}

                  where
                  begin{eqnarray}
                  v(x)=frac{1}{m(x)} left(
                  C_1 cdot Hnleft(
                  begin{array}{r|rr|}
                  x_0 & a & b \
                  q & c & d
                  end{array}
                  f(x)
                  right) +
                  C_2 cdot [f(x)]^{1-c} Hnleft(
                  begin{array}{r|rr|}
                  x_0 & a+1-c & b+1-c \
                  q_1 & 2-c & d
                  end{array}
                  f(x)
                  right)
                  right)
                  end{eqnarray}

                  where $q_1=q-(c-1)(a+b-c-d+d x_0 +1)$
                  and $(a,b,c,d,q)=(1/2,1/2,1,0,q)$ and $x_0=2/3$ and $f(x)=(3 x)/(4(x-1))$.



                  A =.; B =.; CC =.; DD =.; x0 =.;
                  a =.; b =.; c =.; d =.; q =.;
                  A1[x_] = 1/x + 1/(x - 1) + 1/(x + 8);

                  perm = Permutations[{1, 2, 3, 4}];
                  sol = Table[{A, B, CC, DD, x0} /.
                  Solve[{B/A,
                  DD/CC, (B - DD)/(A - CC), (B - DD x0)/(A -
                  CC x0)} == {0, -1, -4, 8}[[perm[[j]]]]], {j, 1, 24}];
                  MatrixForm[sol]; myList = {};
                  Do[
                  A =.; B =.; CC =.; DD =.; x0 =.;
                  a =.; b =.; c =.; d =.; q =.;
                  {A, B, CC, DD, x0} = First[sol[[which]]];
                  f[x_] = Simplify[(A x + B)/(CC x + DD)];
                  m[x_] = Sqrt[x (x - 1) (x + 8)] (1 - f[x])^(-d/2) f[x]^(-c/2) Sqrt[
                  f'[x]] (x0 - f[x])^(1/2 (-a - b + d + c - 1));
                  A0[x_] =
                  Apart[Together[-(-1 + a^2 + b^2 + c^2 + 2 a (b - c - d) + 2 c d +
                  d^2 - 2 b (c + d)) (Derivative[1][f][x]^2)/(
                  4 (x0 - f[x])^2) + (2 q -
                  c^2 (-1 + x0) + ((1 + b - d) d + a (-2 b + d)) x0 +
                  c (-1 + d + a (-1 + x0) + b (-1 + x0) + x0 - 2 d x0)) (
                  Derivative[1][f][x]^2)/(
                  2 (-1 + x0) x0 (x0 - f[x])) - (-2 + d) d Derivative[1][f][x]^2/(
                  4 (-1 + f[x])^2) + (-d^2 + a (-2 b + d) + 2 q +
                  d (1 + b - c x0)) (Derivative[1][f][x]^2)/(
                  2 (-1 + x0) (-1 + f[x])) - (-2 + c) c (Derivative[1][f][x]^2)/(
                  4 f[x]^2) + (-c^2 - 2 q + c (1 + a + b - d + d x0)) (
                  Derivative[1][f][x]^2)/(2 x0 f[x]) +
                  1/4 (A1[x]^2 +
                  2 Derivative[1][A1][x] + (-3 (f^[Prime][Prime])[x]^2 +
                  2 Derivative[1][f][x]
                  !(*SuperscriptBox[(f),
                  TagBox[
                  RowBox[{"(", "3", ")"}],
                  Derivative],
                  MultilineFunction->None])[x])/Derivative[1][f][x]^2)], x];
                  eX = A0[x];
                  subst = {a, b, c, d} /.
                  Solve[{Coefficient[eX, x, -2], Coefficient[eX, 1/(x - 1)^2],
                  Coefficient[eX, 1/(x - 4)^2],
                  Coefficient[eX, 1/(x + 8)^2]} == {0, 0, 0, 0}];
                  {a, b, c, d} = subst[[1]];
                  Clear[v]; Clear[y];
                  myeqn = (D[
                  y[x], {x,
                  2}] + (c/x + d/(x - 1) + (a + b - c - d + 1)/(x - x0)) D[y[x],
                  x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
                  subst = {x :> f[x],
                  Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
                  Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
                  1/(f'[x])^2 Derivative[2][y][x]};
                  myeqn =
                  Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x], y''[x]},
                  Simplify];
                  y[x_] = m[x] v[x];
                  eX = FullSimplify[
                  myeqn /. Derivative[2][v][x] :> -A1[x] v'[x] - A0[x] v[x]];
                  myList = Join[myList, {{f[x], x0}}];
                  Print[{eX, A0[x], {a, b, c, d, q}, x0, f[x]}];
                  , {which, 1, 24}]


                  enter image description here



                  To summarize this ODE is indeed different from the first one on top of this webpage in that in here we obtained twenty four different exactly solvable cases whereas in the other case all the twenty four cases turn out to be the same.






                  share|cite|improve this answer












                  This is an answer to the comment posted by doraemonpaul . The question is to find solutions and possibly outline differences in finding those solutions to the first ODE above. The new ODE reads:
                  begin{eqnarray}
                  frac{d^2 v(x)}{d x^2} +underbrace{left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right)}_{a_1(x)} frac{d v(x)}{d x} - left( frac{1}{4 x} - frac{1}{3(x-1)} + frac{1}{12(x-4)} + frac{1}{12(x+8)}right)v(x)=0
                  end{eqnarray}

                  In here we start from the Heun ODE and as usual we change the dependent variable $xrightarrow f(x)$ and then the independent variable $y(x)=m(x) v(x)$ and then we choose the function $m(x)$ so that the coefficients at the first derivative match. This gives:
                  begin{equation}
                  m(x)=sqrt{x(x-1)(x+8)} (1-f(x))^{-d/2} f[x]^{-c/2} sqrt{f^{'}(x)} (x_0-f(x))^{1/2(-a-b+c+d-1)}
                  end{equation}

                  and
                  begin{eqnarray}
                  &&frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(right.\
                  &&left. frac{f'(x)^2 left(-a^2-2 a (b-c-d)-b^2+2 b (c+d)-c^2-2 c d-d^2+1right)}{4 (x_0-f(x))^2}right.+\
                  &&frac{f'(x)^2 left(c (a (x_0-1)+b (x_0-1)-2 d x_0+d+x_0-1)+x_0 (a (d-2 b)+d (b-d+1))+c^2 (-(x_0-1))+2 qright)}{2 (x_0-1) x_0 (x_0-f(x))}+\
                  &&frac{(2-d) d f'(x)^2}{4 (f(x)-1)^2}+\
                  &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                  &&frac{f'(x)^2 left(a (d-2 b)+d (b-c x_0+1)-d^2+2 qright)}{2 (x_0-1) (f(x)-1)}+\
                  &&frac{f'(x)^2 left(c (a+b+d x_0-d+1)-c^2-2 qright)}{2 x_0 f(x)}+\
                  &&frac{1}{4} left(2 a_1'(x)+a_1(x)^2+underbrace{frac{2 f^{(3)}(x) f'(x)-3 f''(x)^2}{f'(x)^2}}_{mbox{Schwarzian derivative}}right)\
                  &&left.right)v(x)=0
                  end{eqnarray}

                  Now we take the good old Moebius function $f(x)=(A x+B)/(C x+D)$ (note that this anihilates the Schwarzian derivative in the last term in parentheses above) and we choose the upper case constants in the usual way i.e. via
                  begin{eqnarray}
                  left( begin{array}{r} frac{B}{A}\ frac{B-D}{A-C} \ frac{D}{C} \ frac{B-Dx_0}{A-Cx_0} end{array}right) =
                  left( begin{array}{r} 0\ -1 \ -4 \ 8end{array}right) odot pi
                  end{eqnarray}

                  where $pi$ is a permutation of length four. Having done this we decompose into partial fractions the coefficient at the zeroth derivative and then we anihilate the terms being proportional to second powers. This gives us four equations with five unknowns so we expect to get one free parameter. This is indeed the case. One of the twenty four cases reads:
                  begin{eqnarray}
                  frac{d^2 v(x)}{d x^2} +left( frac{1}{x} + frac{1}{x-1} + frac{1}{x+8} right) frac{d v(x)}{d x} + left(frac{11-24 q}{18 (x-1)}+frac{6 q-frac{3}{2}}{24 (x-4)}+frac{18 q-8}{16 x}+frac{-6 q-7}{144 (x+8)}right) v(x)=0
                  end{eqnarray}

                  where
                  begin{eqnarray}
                  v(x)=frac{1}{m(x)} left(
                  C_1 cdot Hnleft(
                  begin{array}{r|rr|}
                  x_0 & a & b \
                  q & c & d
                  end{array}
                  f(x)
                  right) +
                  C_2 cdot [f(x)]^{1-c} Hnleft(
                  begin{array}{r|rr|}
                  x_0 & a+1-c & b+1-c \
                  q_1 & 2-c & d
                  end{array}
                  f(x)
                  right)
                  right)
                  end{eqnarray}

                  where $q_1=q-(c-1)(a+b-c-d+d x_0 +1)$
                  and $(a,b,c,d,q)=(1/2,1/2,1,0,q)$ and $x_0=2/3$ and $f(x)=(3 x)/(4(x-1))$.



                  A =.; B =.; CC =.; DD =.; x0 =.;
                  a =.; b =.; c =.; d =.; q =.;
                  A1[x_] = 1/x + 1/(x - 1) + 1/(x + 8);

                  perm = Permutations[{1, 2, 3, 4}];
                  sol = Table[{A, B, CC, DD, x0} /.
                  Solve[{B/A,
                  DD/CC, (B - DD)/(A - CC), (B - DD x0)/(A -
                  CC x0)} == {0, -1, -4, 8}[[perm[[j]]]]], {j, 1, 24}];
                  MatrixForm[sol]; myList = {};
                  Do[
                  A =.; B =.; CC =.; DD =.; x0 =.;
                  a =.; b =.; c =.; d =.; q =.;
                  {A, B, CC, DD, x0} = First[sol[[which]]];
                  f[x_] = Simplify[(A x + B)/(CC x + DD)];
                  m[x_] = Sqrt[x (x - 1) (x + 8)] (1 - f[x])^(-d/2) f[x]^(-c/2) Sqrt[
                  f'[x]] (x0 - f[x])^(1/2 (-a - b + d + c - 1));
                  A0[x_] =
                  Apart[Together[-(-1 + a^2 + b^2 + c^2 + 2 a (b - c - d) + 2 c d +
                  d^2 - 2 b (c + d)) (Derivative[1][f][x]^2)/(
                  4 (x0 - f[x])^2) + (2 q -
                  c^2 (-1 + x0) + ((1 + b - d) d + a (-2 b + d)) x0 +
                  c (-1 + d + a (-1 + x0) + b (-1 + x0) + x0 - 2 d x0)) (
                  Derivative[1][f][x]^2)/(
                  2 (-1 + x0) x0 (x0 - f[x])) - (-2 + d) d Derivative[1][f][x]^2/(
                  4 (-1 + f[x])^2) + (-d^2 + a (-2 b + d) + 2 q +
                  d (1 + b - c x0)) (Derivative[1][f][x]^2)/(
                  2 (-1 + x0) (-1 + f[x])) - (-2 + c) c (Derivative[1][f][x]^2)/(
                  4 f[x]^2) + (-c^2 - 2 q + c (1 + a + b - d + d x0)) (
                  Derivative[1][f][x]^2)/(2 x0 f[x]) +
                  1/4 (A1[x]^2 +
                  2 Derivative[1][A1][x] + (-3 (f^[Prime][Prime])[x]^2 +
                  2 Derivative[1][f][x]
                  !(*SuperscriptBox[(f),
                  TagBox[
                  RowBox[{"(", "3", ")"}],
                  Derivative],
                  MultilineFunction->None])[x])/Derivative[1][f][x]^2)], x];
                  eX = A0[x];
                  subst = {a, b, c, d} /.
                  Solve[{Coefficient[eX, x, -2], Coefficient[eX, 1/(x - 1)^2],
                  Coefficient[eX, 1/(x - 4)^2],
                  Coefficient[eX, 1/(x + 8)^2]} == {0, 0, 0, 0}];
                  {a, b, c, d} = subst[[1]];
                  Clear[v]; Clear[y];
                  myeqn = (D[
                  y[x], {x,
                  2}] + (c/x + d/(x - 1) + (a + b - c - d + 1)/(x - x0)) D[y[x],
                  x] + (a b x - q)/(x (x - 1) (x - x0)) y[x]);
                  subst = {x :> f[x],
                  Derivative[1][y][x] :> 1/f'[x] Derivative[1][y][x],
                  Derivative[2][y][x] :> -f''[x]/(f'[x])^3 Derivative[1][y][x] +
                  1/(f'[x])^2 Derivative[2][y][x]};
                  myeqn =
                  Collect[(myeqn /. subst /. y[f[x]] :> y[x]), {y[x], y'[x], y''[x]},
                  Simplify];
                  y[x_] = m[x] v[x];
                  eX = FullSimplify[
                  myeqn /. Derivative[2][v][x] :> -A1[x] v'[x] - A0[x] v[x]];
                  myList = Join[myList, {{f[x], x0}}];
                  Print[{eX, A0[x], {a, b, c, d, q}, x0, f[x]}];
                  , {which, 1, 24}]


                  enter image description here



                  To summarize this ODE is indeed different from the first one on top of this webpage in that in here we obtained twenty four different exactly solvable cases whereas in the other case all the twenty four cases turn out to be the same.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Nov 19 at 18:44









                  Przemo

                  4,1521928




                  4,1521928






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2377289%2fsolutions-in-terms-of-the-hypergeometric-functions%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                      How to change which sound is reproduced for terminal bell?

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?