How to implement split-complex numbers?
$begingroup$
For those who do not know, the split-complex numbers are an analogue to the complex numbers where J is defined such that $J^2=1$ but $Jnepm1$, so they are all of the form $a+bJ$.
By using TagSetDelayed, I tried to define the split-complex numbers as so:
J /: J^2 := 1
If I then type J^2
, I get the output 1
.
However, if I type J^3
, I just get the output J^3
. I would like to instead get the output $J$, since $J^3=J^2J=1J=J$.
Is there a better way to implement this number system?
programming algebraic-manipulation algebra
$endgroup$
add a comment |
$begingroup$
For those who do not know, the split-complex numbers are an analogue to the complex numbers where J is defined such that $J^2=1$ but $Jnepm1$, so they are all of the form $a+bJ$.
By using TagSetDelayed, I tried to define the split-complex numbers as so:
J /: J^2 := 1
If I then type J^2
, I get the output 1
.
However, if I type J^3
, I just get the output J^3
. I would like to instead get the output $J$, since $J^3=J^2J=1J=J$.
Is there a better way to implement this number system?
programming algebraic-manipulation algebra
$endgroup$
2
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46
add a comment |
$begingroup$
For those who do not know, the split-complex numbers are an analogue to the complex numbers where J is defined such that $J^2=1$ but $Jnepm1$, so they are all of the form $a+bJ$.
By using TagSetDelayed, I tried to define the split-complex numbers as so:
J /: J^2 := 1
If I then type J^2
, I get the output 1
.
However, if I type J^3
, I just get the output J^3
. I would like to instead get the output $J$, since $J^3=J^2J=1J=J$.
Is there a better way to implement this number system?
programming algebraic-manipulation algebra
$endgroup$
For those who do not know, the split-complex numbers are an analogue to the complex numbers where J is defined such that $J^2=1$ but $Jnepm1$, so they are all of the form $a+bJ$.
By using TagSetDelayed, I tried to define the split-complex numbers as so:
J /: J^2 := 1
If I then type J^2
, I get the output 1
.
However, if I type J^3
, I just get the output J^3
. I would like to instead get the output $J$, since $J^3=J^2J=1J=J$.
Is there a better way to implement this number system?
programming algebraic-manipulation algebra
programming algebraic-manipulation algebra
edited Jan 22 at 23:46
volcanrb
asked Jan 22 at 22:18
volcanrbvolcanrb
1734
1734
2
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46
add a comment |
2
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46
2
2
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Try this:
J /: Power[J, p_Integer?OddQ] := J
J /: Power[J, p_Integer?EvenQ] := 1
J^Range[-10, 10]
{1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f190033%2fhow-to-implement-split-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Try this:
J /: Power[J, p_Integer?OddQ] := J
J /: Power[J, p_Integer?EvenQ] := 1
J^Range[-10, 10]
{1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1}
$endgroup$
add a comment |
$begingroup$
Try this:
J /: Power[J, p_Integer?OddQ] := J
J /: Power[J, p_Integer?EvenQ] := 1
J^Range[-10, 10]
{1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1}
$endgroup$
add a comment |
$begingroup$
Try this:
J /: Power[J, p_Integer?OddQ] := J
J /: Power[J, p_Integer?EvenQ] := 1
J^Range[-10, 10]
{1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1}
$endgroup$
Try this:
J /: Power[J, p_Integer?OddQ] := J
J /: Power[J, p_Integer?EvenQ] := 1
J^Range[-10, 10]
{1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1, J, 1}
answered Jan 22 at 22:21
Henrik SchumacherHenrik Schumacher
51.6k469146
51.6k469146
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f190033%2fhow-to-implement-split-complex-numbers%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Might be easier to do this using 2x2 matrix representations.
$endgroup$
– Daniel Lichtblau
Jan 22 at 22:28
$begingroup$
Ummmm.... isn't $J = -1$?
$endgroup$
– David G. Stork
Jan 22 at 23:28
$begingroup$
Sorry, I forgot to specify that $Jne -1$ either, I've edited the question to fix that
$endgroup$
– volcanrb
Jan 22 at 23:46