Find the value of the given limit












2















Find the value of this limit:



$$lim_{xto infty}dfrac{1}{pi}int _0^infty cosleft(dfrac{t^3}{3}+txright) dt$$.




Now as $xto infty implies dfrac{t^3}{3}+txto infty $ for any fixed $t$.



then $cosleft(dfrac{t^3}{3}+txright)$ is oscillating



Now I dont understand how should I compute the limit in this case?



Can someone please help.










share|cite|improve this question




















  • 1




    @KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
    – Brevan Ellefsen
    Nov 23 '18 at 8:17








  • 1




    @BrevanEllefsen Thank you very much.
    – Kavi Rama Murthy
    Nov 23 '18 at 8:23






  • 1




    Having a look at Airy function may be useful.
    – Kemono Chen
    Nov 23 '18 at 8:26






  • 1




    @KemonoChen;I checked it but it does not give a proof why the integral converges to 0
    – Join_PhD
    Nov 23 '18 at 8:30






  • 3




    Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
    – Fabian
    Nov 23 '18 at 9:26


















2















Find the value of this limit:



$$lim_{xto infty}dfrac{1}{pi}int _0^infty cosleft(dfrac{t^3}{3}+txright) dt$$.




Now as $xto infty implies dfrac{t^3}{3}+txto infty $ for any fixed $t$.



then $cosleft(dfrac{t^3}{3}+txright)$ is oscillating



Now I dont understand how should I compute the limit in this case?



Can someone please help.










share|cite|improve this question




















  • 1




    @KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
    – Brevan Ellefsen
    Nov 23 '18 at 8:17








  • 1




    @BrevanEllefsen Thank you very much.
    – Kavi Rama Murthy
    Nov 23 '18 at 8:23






  • 1




    Having a look at Airy function may be useful.
    – Kemono Chen
    Nov 23 '18 at 8:26






  • 1




    @KemonoChen;I checked it but it does not give a proof why the integral converges to 0
    – Join_PhD
    Nov 23 '18 at 8:30






  • 3




    Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
    – Fabian
    Nov 23 '18 at 9:26
















2












2








2


1






Find the value of this limit:



$$lim_{xto infty}dfrac{1}{pi}int _0^infty cosleft(dfrac{t^3}{3}+txright) dt$$.




Now as $xto infty implies dfrac{t^3}{3}+txto infty $ for any fixed $t$.



then $cosleft(dfrac{t^3}{3}+txright)$ is oscillating



Now I dont understand how should I compute the limit in this case?



Can someone please help.










share|cite|improve this question
















Find the value of this limit:



$$lim_{xto infty}dfrac{1}{pi}int _0^infty cosleft(dfrac{t^3}{3}+txright) dt$$.




Now as $xto infty implies dfrac{t^3}{3}+txto infty $ for any fixed $t$.



then $cosleft(dfrac{t^3}{3}+txright)$ is oscillating



Now I dont understand how should I compute the limit in this case?



Can someone please help.







calculus integration limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 23 '18 at 8:06









Rebellos

14.5k31246




14.5k31246










asked Nov 23 '18 at 7:56









Join_PhDJoin_PhD

3088




3088








  • 1




    @KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
    – Brevan Ellefsen
    Nov 23 '18 at 8:17








  • 1




    @BrevanEllefsen Thank you very much.
    – Kavi Rama Murthy
    Nov 23 '18 at 8:23






  • 1




    Having a look at Airy function may be useful.
    – Kemono Chen
    Nov 23 '18 at 8:26






  • 1




    @KemonoChen;I checked it but it does not give a proof why the integral converges to 0
    – Join_PhD
    Nov 23 '18 at 8:30






  • 3




    Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
    – Fabian
    Nov 23 '18 at 9:26
















  • 1




    @KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
    – Brevan Ellefsen
    Nov 23 '18 at 8:17








  • 1




    @BrevanEllefsen Thank you very much.
    – Kavi Rama Murthy
    Nov 23 '18 at 8:23






  • 1




    Having a look at Airy function may be useful.
    – Kemono Chen
    Nov 23 '18 at 8:26






  • 1




    @KemonoChen;I checked it but it does not give a proof why the integral converges to 0
    – Join_PhD
    Nov 23 '18 at 8:30






  • 3




    Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
    – Fabian
    Nov 23 '18 at 9:26










1




1




@KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
– Brevan Ellefsen
Nov 23 '18 at 8:17






@KaviRamaMurthy I believe finiteness should follow from the following argument, (though I don't have time to check my work right now): $$begin{align} left|int_0^{infty}cosleft(frac{t^3}{3}+txright)dtright| &= left|int_0^{infty}cos(t^3/3)cos(tx)dt - int_0^{infty}sin(t^3/3)sin(tx)dtright| \& le int_0^{infty}left|cos(t^3/3)cos(tx)right|dt + int_0^{infty}left|sin(t^3/3)sin(tx)right|dt \&le int_0^{infty} |cos(t^3/3)|dt + int_0^{infty}|sin(t^3/3)|dt \&= frac{Gamma(1/3)}{2sqrt{3}} + frac{Gamma(1/3)}{6} end{align}$$
– Brevan Ellefsen
Nov 23 '18 at 8:17






1




1




@BrevanEllefsen Thank you very much.
– Kavi Rama Murthy
Nov 23 '18 at 8:23




@BrevanEllefsen Thank you very much.
– Kavi Rama Murthy
Nov 23 '18 at 8:23




1




1




Having a look at Airy function may be useful.
– Kemono Chen
Nov 23 '18 at 8:26




Having a look at Airy function may be useful.
– Kemono Chen
Nov 23 '18 at 8:26




1




1




@KemonoChen;I checked it but it does not give a proof why the integral converges to 0
– Join_PhD
Nov 23 '18 at 8:30




@KemonoChen;I checked it but it does not give a proof why the integral converges to 0
– Join_PhD
Nov 23 '18 at 8:30




3




3




Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
– Fabian
Nov 23 '18 at 9:26






Take a look at the Riemann–Lebesgue lemma. (hint: the limit is 0)
– Fabian
Nov 23 '18 at 9:26












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010096%2ffind-the-value-of-the-given-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3010096%2ffind-the-value-of-the-given-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?