Ordering on Time Complexity Classes
In Sipser, the time complexity class $mathrm{TIME}(f(n))$ with respect to a function $f colon mathbb{N} to mathbb{N}$ is defined to be the collection of all languages that are decidable by an $O(f(n))$ time Turing machine.
It is easy to give some examples of containment relations between complexity classes from this definition: $mathrm{TIME}(n) =mathrm{TIME}(2n)$ and $mathrm{TIME}(n) subseteq mathrm{TIME}(n^2)$.
Now I guess it is natural (?) to ask the following question: given any two such complexity-generating functions $f,g$, is it always the case that either $mathrm{TIME}(f(n)) subseteq mathrm{TIME}(g(n))$ or $mathrm{TIME}(f(n)) supseteq mathrm{TIME}(g(n))$? If the answer is yes (which would surprise me a little), this would define a total order on the space of functions $mathbb N^{mathbb N}$.
computational-complexity
add a comment |
In Sipser, the time complexity class $mathrm{TIME}(f(n))$ with respect to a function $f colon mathbb{N} to mathbb{N}$ is defined to be the collection of all languages that are decidable by an $O(f(n))$ time Turing machine.
It is easy to give some examples of containment relations between complexity classes from this definition: $mathrm{TIME}(n) =mathrm{TIME}(2n)$ and $mathrm{TIME}(n) subseteq mathrm{TIME}(n^2)$.
Now I guess it is natural (?) to ask the following question: given any two such complexity-generating functions $f,g$, is it always the case that either $mathrm{TIME}(f(n)) subseteq mathrm{TIME}(g(n))$ or $mathrm{TIME}(f(n)) supseteq mathrm{TIME}(g(n))$? If the answer is yes (which would surprise me a little), this would define a total order on the space of functions $mathbb N^{mathbb N}$.
computational-complexity
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34
add a comment |
In Sipser, the time complexity class $mathrm{TIME}(f(n))$ with respect to a function $f colon mathbb{N} to mathbb{N}$ is defined to be the collection of all languages that are decidable by an $O(f(n))$ time Turing machine.
It is easy to give some examples of containment relations between complexity classes from this definition: $mathrm{TIME}(n) =mathrm{TIME}(2n)$ and $mathrm{TIME}(n) subseteq mathrm{TIME}(n^2)$.
Now I guess it is natural (?) to ask the following question: given any two such complexity-generating functions $f,g$, is it always the case that either $mathrm{TIME}(f(n)) subseteq mathrm{TIME}(g(n))$ or $mathrm{TIME}(f(n)) supseteq mathrm{TIME}(g(n))$? If the answer is yes (which would surprise me a little), this would define a total order on the space of functions $mathbb N^{mathbb N}$.
computational-complexity
In Sipser, the time complexity class $mathrm{TIME}(f(n))$ with respect to a function $f colon mathbb{N} to mathbb{N}$ is defined to be the collection of all languages that are decidable by an $O(f(n))$ time Turing machine.
It is easy to give some examples of containment relations between complexity classes from this definition: $mathrm{TIME}(n) =mathrm{TIME}(2n)$ and $mathrm{TIME}(n) subseteq mathrm{TIME}(n^2)$.
Now I guess it is natural (?) to ask the following question: given any two such complexity-generating functions $f,g$, is it always the case that either $mathrm{TIME}(f(n)) subseteq mathrm{TIME}(g(n))$ or $mathrm{TIME}(f(n)) supseteq mathrm{TIME}(g(n))$? If the answer is yes (which would surprise me a little), this would define a total order on the space of functions $mathbb N^{mathbb N}$.
computational-complexity
computational-complexity
asked Nov 20 at 18:20
P. Factor
31519
31519
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34
add a comment |
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006701%2fordering-on-time-complexity-classes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006701%2fordering-on-time-complexity-classes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
It's certainly possible to find monotonic functions $f, g$ such that neither $f = O(g)$ nor $g = O(f)$; for example, let $E(n)$ equal $1$ if $n$ is even and $0$ otherwise, and define $f(n) = 2^{2^{n+E(n)}}$ and $g(n) = 2^{2^{n + 1 - E(n)}}$. I don't know if there are languages in the corresponding complexity classes, though.
– Connor Harris
Nov 20 at 18:34