Calculate the limit $lim_{ntoinfty } sqrt[n]{4^{n}-3^{n-2}} $
I am trying to calculate the limit:
$$lim_{ntoinfty}sqrt[n]{4^{n}-3^{n-2}}$$ My progression so far is rewiring as:
$$lim_{ntoinfty}left(4^{n}-3^{n}cdotfrac{1}{9}right)^{frac{1}{n}}$$
Are my steps correct? How do I continue?
limits
add a comment |
I am trying to calculate the limit:
$$lim_{ntoinfty}sqrt[n]{4^{n}-3^{n-2}}$$ My progression so far is rewiring as:
$$lim_{ntoinfty}left(4^{n}-3^{n}cdotfrac{1}{9}right)^{frac{1}{n}}$$
Are my steps correct? How do I continue?
limits
add a comment |
I am trying to calculate the limit:
$$lim_{ntoinfty}sqrt[n]{4^{n}-3^{n-2}}$$ My progression so far is rewiring as:
$$lim_{ntoinfty}left(4^{n}-3^{n}cdotfrac{1}{9}right)^{frac{1}{n}}$$
Are my steps correct? How do I continue?
limits
I am trying to calculate the limit:
$$lim_{ntoinfty}sqrt[n]{4^{n}-3^{n-2}}$$ My progression so far is rewiring as:
$$lim_{ntoinfty}left(4^{n}-3^{n}cdotfrac{1}{9}right)^{frac{1}{n}}$$
Are my steps correct? How do I continue?
limits
limits
edited Nov 23 at 10:01
Mutantoe
564411
564411
asked Nov 20 at 18:16
Jack
213
213
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
Hint: Rewrite as $$lim_{n to infty} sqrt[n]{4^n - 3^{n-2}} = lim_{n to infty} 4 sqrt[n] {1 - frac{1}{9} left( frac{3}{4}right)^n}$$ and consider the limiting behavior of the term under the radical sign.
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
add a comment |
HINT
We have that
$$sqrt[n]{4^{n}-3^{n-2}}sim sqrt[n]{4^{n}}$$
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
add a comment |
You can also evaluate the limit in the following way
$$begin{aligned}lim_{ntoinfty}sqrt[n]{4^n-3^{n-2}} &= lim_{ntoinfty}4left({1-frac{1}{9}left( frac{3}{4}right)^n}right)^frac1n=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^frac1n=\
&=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^nfrac19left(frac34right)^nfrac1n}=\
&=4left(lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^n}right)^{lim_{ntoinfty}frac19left(frac34right)^nfrac1n}=\
&=4left(e^{-1}right)^0=4
end{aligned}$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006693%2fcalculate-the-limit-lim-n-to-infty-sqrtn4n-3n-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint: Rewrite as $$lim_{n to infty} sqrt[n]{4^n - 3^{n-2}} = lim_{n to infty} 4 sqrt[n] {1 - frac{1}{9} left( frac{3}{4}right)^n}$$ and consider the limiting behavior of the term under the radical sign.
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
add a comment |
Hint: Rewrite as $$lim_{n to infty} sqrt[n]{4^n - 3^{n-2}} = lim_{n to infty} 4 sqrt[n] {1 - frac{1}{9} left( frac{3}{4}right)^n}$$ and consider the limiting behavior of the term under the radical sign.
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
add a comment |
Hint: Rewrite as $$lim_{n to infty} sqrt[n]{4^n - 3^{n-2}} = lim_{n to infty} 4 sqrt[n] {1 - frac{1}{9} left( frac{3}{4}right)^n}$$ and consider the limiting behavior of the term under the radical sign.
Hint: Rewrite as $$lim_{n to infty} sqrt[n]{4^n - 3^{n-2}} = lim_{n to infty} 4 sqrt[n] {1 - frac{1}{9} left( frac{3}{4}right)^n}$$ and consider the limiting behavior of the term under the radical sign.
answered Nov 20 at 18:19
Connor Harris
4,303723
4,303723
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
add a comment |
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
1
1
so the answer is 4?
– Jack
Nov 20 at 18:35
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
Yes, it is. If $f(n) to 1$, then $sqrt[n]{f(n)} to 1$ as well.
– Connor Harris
Nov 20 at 18:39
add a comment |
HINT
We have that
$$sqrt[n]{4^{n}-3^{n-2}}sim sqrt[n]{4^{n}}$$
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
add a comment |
HINT
We have that
$$sqrt[n]{4^{n}-3^{n-2}}sim sqrt[n]{4^{n}}$$
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
add a comment |
HINT
We have that
$$sqrt[n]{4^{n}-3^{n-2}}sim sqrt[n]{4^{n}}$$
HINT
We have that
$$sqrt[n]{4^{n}-3^{n-2}}sim sqrt[n]{4^{n}}$$
answered Nov 20 at 18:21
gimusi
1
1
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
add a comment |
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
so the answer is 4?
– Jack
Nov 20 at 18:35
so the answer is 4?
– Jack
Nov 20 at 18:35
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
Yes of course indeed $4^n>>3^{n-2}$ that is $$frac{4^n-3^{n-2}}{4^n}to 1$$
– gimusi
Nov 20 at 18:36
add a comment |
You can also evaluate the limit in the following way
$$begin{aligned}lim_{ntoinfty}sqrt[n]{4^n-3^{n-2}} &= lim_{ntoinfty}4left({1-frac{1}{9}left( frac{3}{4}right)^n}right)^frac1n=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^frac1n=\
&=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^nfrac19left(frac34right)^nfrac1n}=\
&=4left(lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^n}right)^{lim_{ntoinfty}frac19left(frac34right)^nfrac1n}=\
&=4left(e^{-1}right)^0=4
end{aligned}$$
add a comment |
You can also evaluate the limit in the following way
$$begin{aligned}lim_{ntoinfty}sqrt[n]{4^n-3^{n-2}} &= lim_{ntoinfty}4left({1-frac{1}{9}left( frac{3}{4}right)^n}right)^frac1n=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^frac1n=\
&=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^nfrac19left(frac34right)^nfrac1n}=\
&=4left(lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^n}right)^{lim_{ntoinfty}frac19left(frac34right)^nfrac1n}=\
&=4left(e^{-1}right)^0=4
end{aligned}$$
add a comment |
You can also evaluate the limit in the following way
$$begin{aligned}lim_{ntoinfty}sqrt[n]{4^n-3^{n-2}} &= lim_{ntoinfty}4left({1-frac{1}{9}left( frac{3}{4}right)^n}right)^frac1n=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^frac1n=\
&=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^nfrac19left(frac34right)^nfrac1n}=\
&=4left(lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^n}right)^{lim_{ntoinfty}frac19left(frac34right)^nfrac1n}=\
&=4left(e^{-1}right)^0=4
end{aligned}$$
You can also evaluate the limit in the following way
$$begin{aligned}lim_{ntoinfty}sqrt[n]{4^n-3^{n-2}} &= lim_{ntoinfty}4left({1-frac{1}{9}left( frac{3}{4}right)^n}right)^frac1n=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^frac1n=\
&=4lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^nfrac19left(frac34right)^nfrac1n}=\
&=4left(lim_{ntoinfty}left(1-frac1{9left(frac43right)^n}right)^{9left(frac43right)^n}right)^{lim_{ntoinfty}frac19left(frac34right)^nfrac1n}=\
&=4left(e^{-1}right)^0=4
end{aligned}$$
answered Nov 20 at 18:46
Mikalai Parshutsich
453315
453315
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006693%2fcalculate-the-limit-lim-n-to-infty-sqrtn4n-3n-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown