Sum of two infinite complex geometric sums
up vote
5
down vote
favorite
let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
add a comment |
up vote
5
down vote
favorite
let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21
add a comment |
up vote
5
down vote
favorite
up vote
5
down vote
favorite
let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
let $$C=frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...$$
$$S=frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...$$
I want to find the sum of the series $C+iS$ and thus find expressions for $C$ and $S$.
so the sum of $C+iS$ is
$$C+iS=(frac{costheta}{2}-frac{cos2theta}{4}+frac{cos3theta}{8}+...)+i(frac{sintheta}{2}-frac{sin2theta}{4}+frac{sin3theta}{8}+...)$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(cos2theta+isin2theta)+frac{1}{8}(cos3theta+isin3theta) + ...$$
$$=frac{1}{2}(costheta+isintheta)-frac{1}{4}(costheta+isintheta)^2+frac{1}{8}(costheta+isintheta)^3 + ...$$
So I know i have to now put his into a geometric series where i can find the first term and common ratio as i will want to sum to infinity, but I'm not sure where to go from here?
So I've continued and got the series to here:
$$frac{1}{2}[e^{itheta}-frac{1}{2}(e^{itheta})^2+frac{1}{4}(e^{itheta})^3...]$$ But I'm still not sure where to continue.
sequences-and-series complex-numbers
sequences-and-series complex-numbers
edited Nov 15 at 15:39
asked Nov 15 at 11:14
H.Linkhorn
12311
12311
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21
add a comment |
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21
add a comment |
3 Answers
3
active
oldest
votes
up vote
3
down vote
accepted
HINT
We have that
$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
add a comment |
up vote
4
down vote
Hint:
Using Intuition behind euler's formula and the special case $e^{ipi}=-1$
$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$
add a comment |
up vote
0
down vote
Hint: Consider geometric series
$$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
about $z=0$.
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
HINT
We have that
$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
add a comment |
up vote
3
down vote
accepted
HINT
We have that
$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
HINT
We have that
$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
HINT
We have that
$$C+iS=sum_{k=1}^inftyfrac{(-1)^{k+1}}{2^k}e^{left(ikthetaright)}
=-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k$$
then refer to geometric series which holds also for $r$ complex $|r|<1$.
edited Nov 15 at 11:28
answered Nov 15 at 11:21
gimusi
86k74294
86k74294
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
add a comment |
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
I tried to sum to infinity using your sum with $a=0.5e^itheta$ and $r=-0.5e^itheta$ but i obtained $frac{exp(itheta)+1}{exp(itheta)+2exp(-itheta)+3} $which isn't the correct answer. I was told i should be $frac{2exp(itheta)+1}{5+4costheta}$
– H.Linkhorn
Nov 17 at 18:31
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
@H.Linkhorn We have that $$-sum_{k=1}^inftyleft(-frac{e^{left(ithetaright)}}{2}right)^k=-frac{1}{1+frac{e^{itheta}}{2}}+1=frac{e^{itheta}}{2+e^{itheta}}$$ Then multiply by $2+e^{-itheta}$ denominator and numerator to obtain teh result.
– gimusi
Nov 17 at 21:36
add a comment |
up vote
4
down vote
Hint:
Using Intuition behind euler's formula and the special case $e^{ipi}=-1$
$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$
add a comment |
up vote
4
down vote
Hint:
Using Intuition behind euler's formula and the special case $e^{ipi}=-1$
$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$
add a comment |
up vote
4
down vote
up vote
4
down vote
Hint:
Using Intuition behind euler's formula and the special case $e^{ipi}=-1$
$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$
Hint:
Using Intuition behind euler's formula and the special case $e^{ipi}=-1$
$$dfrac{(cos t+isin t)^n(-1)^{n-1}}{2^n}=-dfrac{e^{int}(e^{ipi})^n}{2^n}=-left(dfrac{e^{i(t+pi)}}2right)^n$$
Now for the common ratio$(r)$ of Geometric Series,
$|r|=left|dfrac{e^{i(t+pi)}}2right|=dfrac12<1$
answered Nov 15 at 11:21
lab bhattacharjee
220k15154271
220k15154271
add a comment |
add a comment |
up vote
0
down vote
Hint: Consider geometric series
$$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
about $z=0$.
add a comment |
up vote
0
down vote
Hint: Consider geometric series
$$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
about $z=0$.
add a comment |
up vote
0
down vote
up vote
0
down vote
Hint: Consider geometric series
$$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
about $z=0$.
Hint: Consider geometric series
$$sum_{ngeq0}(-frac{z}{2})^n=dfrac{1}{1+frac{z}{2}}$$
about $z=0$.
answered Nov 15 at 11:22
Nosrati
25.9k62252
25.9k62252
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2999554%2fsum-of-two-infinite-complex-geometric-sums%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Use $costheta+isintheta=e^{itheta}$ and factor out $frac{1}{2}$.
– Yadati Kiran
Nov 15 at 11:21