Finding specific solutions of a system of differential equations without computations
up vote
0
down vote
favorite
I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.
I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.
I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.
What am I missing here?
differential-equations
add a comment |
up vote
0
down vote
favorite
I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.
I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.
I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.
What am I missing here?
differential-equations
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.
I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.
I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.
What am I missing here?
differential-equations
I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.
I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.
I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.
What am I missing here?
differential-equations
differential-equations
edited Nov 13 at 7:35
asked Nov 13 at 6:35
Dominic Hicks
826
826
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
$$A^{-1}=A,$$
$$e^{At}=A.
begin{pmatrix}{e^t} & 0\
0 & {e^{-t}}end{pmatrix}
.A^{-1}$$
Final solution is
$$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
=begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
$$A^{-1}=A,$$
$$e^{At}=A.
begin{pmatrix}{e^t} & 0\
0 & {e^{-t}}end{pmatrix}
.A^{-1}$$
Final solution is
$$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
=begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
add a comment |
up vote
1
down vote
$$A^{-1}=A,$$
$$e^{At}=A.
begin{pmatrix}{e^t} & 0\
0 & {e^{-t}}end{pmatrix}
.A^{-1}$$
Final solution is
$$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
=begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
add a comment |
up vote
1
down vote
up vote
1
down vote
$$A^{-1}=A,$$
$$e^{At}=A.
begin{pmatrix}{e^t} & 0\
0 & {e^{-t}}end{pmatrix}
.A^{-1}$$
Final solution is
$$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
=begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$
$$A^{-1}=A,$$
$$e^{At}=A.
begin{pmatrix}{e^t} & 0\
0 & {e^{-t}}end{pmatrix}
.A^{-1}$$
Final solution is
$$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
=begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$
answered Nov 13 at 9:17
Aleksas Domarkas
7385
7385
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
add a comment |
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
1
1
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
– LutzL
Nov 13 at 9:35
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996394%2ffinding-specific-solutions-of-a-system-of-differential-equations-without-computa%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown