Finding specific solutions of a system of differential equations without computations











up vote
0
down vote

favorite
1












I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.



I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.



I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.



What am I missing here?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite
    1












    I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.



    I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.



    I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.



    What am I missing here?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.



      I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.



      I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.



      What am I missing here?










      share|cite|improve this question















      I have a reflection matrix $A=begin{pmatrix}-frac{1}{2} & frac{sqrt{3}}{2} \ frac{sqrt{3}}{2} & frac{1}{2} end{pmatrix}$ and a linear, autonomous, and homogeneous system $frac{doverrightarrow{w}}{dt} = Aoverrightarrow{w}$, $overrightarrow{w}(t) = begin{pmatrix} x(t) \ y(t) end{pmatrix}$.



      I've noticed that $left{begin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2}end{pmatrix},begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2}end{pmatrix}right}$ is an eigenbasis with eigenvalues $lambda = 1$ and $lambda = -1$. Thus, I thought that a general solution would be somewhere along the lines of $begin{pmatrix} x'(t) \ y'(t) end{pmatrix} = c_1e^tbegin{pmatrix}frac{1}{2} \ frac{sqrt{3}}{2} end{pmatrix} + c_2e^{-t}begin{pmatrix} -frac{sqrt{3}}{2} \ frac{1}{2} end{pmatrix}$.



      I am unsure about how to go from here to finding specific solutions. I'm asked to find two solutions to this system "without performing calculations", and to indicate where the solutions curves start in the plane. Furthermore, I'm asked to find a solution that starts at $begin{pmatrix} 0 \ 5 end{pmatrix}$.



      What am I missing here?







      differential-equations






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Nov 13 at 7:35

























      asked Nov 13 at 6:35









      Dominic Hicks

      826




      826






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote













          $$A^{-1}=A,$$
          $$e^{At}=A.
          begin{pmatrix}{e^t} & 0\
          0 & {e^{-t}}end{pmatrix}
          .A^{-1}$$

          Final solution is
          $$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
          =begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
          frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$






          share|cite|improve this answer

















          • 1




            Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
            – LutzL
            Nov 13 at 9:35











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996394%2ffinding-specific-solutions-of-a-system-of-differential-equations-without-computa%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          $$A^{-1}=A,$$
          $$e^{At}=A.
          begin{pmatrix}{e^t} & 0\
          0 & {e^{-t}}end{pmatrix}
          .A^{-1}$$

          Final solution is
          $$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
          =begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
          frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$






          share|cite|improve this answer

















          • 1




            Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
            – LutzL
            Nov 13 at 9:35















          up vote
          1
          down vote













          $$A^{-1}=A,$$
          $$e^{At}=A.
          begin{pmatrix}{e^t} & 0\
          0 & {e^{-t}}end{pmatrix}
          .A^{-1}$$

          Final solution is
          $$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
          =begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
          frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$






          share|cite|improve this answer

















          • 1




            Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
            – LutzL
            Nov 13 at 9:35













          up vote
          1
          down vote










          up vote
          1
          down vote









          $$A^{-1}=A,$$
          $$e^{At}=A.
          begin{pmatrix}{e^t} & 0\
          0 & {e^{-t}}end{pmatrix}
          .A^{-1}$$

          Final solution is
          $$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
          =begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
          frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$






          share|cite|improve this answer












          $$A^{-1}=A,$$
          $$e^{At}=A.
          begin{pmatrix}{e^t} & 0\
          0 & {e^{-t}}end{pmatrix}
          .A^{-1}$$

          Final solution is
          $$overrightarrow{w}(t) =e^{At}.begin{pmatrix} 0 \ 5 end{pmatrix}
          =begin{pmatrix}frac{5 sqrt{3}, {{e}^{t}}}{4}-frac{5 sqrt{3}, {{e}^{-t}}}{4}\
          frac{15 {{e}^{t}}}{4}+frac{5 {{e}^{-t}}}{4}end{pmatrix} $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 13 at 9:17









          Aleksas Domarkas

          7385




          7385








          • 1




            Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
            – LutzL
            Nov 13 at 9:35














          • 1




            Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
            – LutzL
            Nov 13 at 9:35








          1




          1




          Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
          – LutzL
          Nov 13 at 9:35




          Or alternatively, because of $A^2=I$, sorting the power series for even and odd powers gives $e^{tA}=cosh(t)I+sinh(t)A$.
          – LutzL
          Nov 13 at 9:35


















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996394%2ffinding-specific-solutions-of-a-system-of-differential-equations-without-computa%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

          ComboBox Display Member on multiple fields

          Is it possible to collect Nectar points via Trainline?