Relating posterior to the least square estimator of W
up vote
1
down vote
favorite
I'm currently working on an assigment and I'm currently stuck and could really use some help, I've been given the fact that my prior over my parameters W is given by a gaussian pdf, likewise is the likelihood a gaussian pdf. Without any further proof the posterior can also be taken for a gaussian.
My expression for the posterior is:
$$p(textbf{W}vert textbf{X},textbf{T}) = exp(-frac{1}{2}textbf{W}^{T}Sigma_w^{-1}textbf{W} +textbf{W}^{T}Sigma_w^{-1}textbf{W}_mu -frac{1}{2}textbf{W}_mu^{T}Sigma_w^{-1}textbf{W}_mu)$$
I've made derivations for the mean $textbf{W}_mu$ and the covariance $Sigma_w^{-1}$, but I don't think they play an important role to what I'm supposed to do here. I think I should use maximum likelihood but I don't seem to get the calculations right.
normal-distribution maximum-likelihood
add a comment |
up vote
1
down vote
favorite
I'm currently working on an assigment and I'm currently stuck and could really use some help, I've been given the fact that my prior over my parameters W is given by a gaussian pdf, likewise is the likelihood a gaussian pdf. Without any further proof the posterior can also be taken for a gaussian.
My expression for the posterior is:
$$p(textbf{W}vert textbf{X},textbf{T}) = exp(-frac{1}{2}textbf{W}^{T}Sigma_w^{-1}textbf{W} +textbf{W}^{T}Sigma_w^{-1}textbf{W}_mu -frac{1}{2}textbf{W}_mu^{T}Sigma_w^{-1}textbf{W}_mu)$$
I've made derivations for the mean $textbf{W}_mu$ and the covariance $Sigma_w^{-1}$, but I don't think they play an important role to what I'm supposed to do here. I think I should use maximum likelihood but I don't seem to get the calculations right.
normal-distribution maximum-likelihood
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm currently working on an assigment and I'm currently stuck and could really use some help, I've been given the fact that my prior over my parameters W is given by a gaussian pdf, likewise is the likelihood a gaussian pdf. Without any further proof the posterior can also be taken for a gaussian.
My expression for the posterior is:
$$p(textbf{W}vert textbf{X},textbf{T}) = exp(-frac{1}{2}textbf{W}^{T}Sigma_w^{-1}textbf{W} +textbf{W}^{T}Sigma_w^{-1}textbf{W}_mu -frac{1}{2}textbf{W}_mu^{T}Sigma_w^{-1}textbf{W}_mu)$$
I've made derivations for the mean $textbf{W}_mu$ and the covariance $Sigma_w^{-1}$, but I don't think they play an important role to what I'm supposed to do here. I think I should use maximum likelihood but I don't seem to get the calculations right.
normal-distribution maximum-likelihood
I'm currently working on an assigment and I'm currently stuck and could really use some help, I've been given the fact that my prior over my parameters W is given by a gaussian pdf, likewise is the likelihood a gaussian pdf. Without any further proof the posterior can also be taken for a gaussian.
My expression for the posterior is:
$$p(textbf{W}vert textbf{X},textbf{T}) = exp(-frac{1}{2}textbf{W}^{T}Sigma_w^{-1}textbf{W} +textbf{W}^{T}Sigma_w^{-1}textbf{W}_mu -frac{1}{2}textbf{W}_mu^{T}Sigma_w^{-1}textbf{W}_mu)$$
I've made derivations for the mean $textbf{W}_mu$ and the covariance $Sigma_w^{-1}$, but I don't think they play an important role to what I'm supposed to do here. I think I should use maximum likelihood but I don't seem to get the calculations right.
normal-distribution maximum-likelihood
normal-distribution maximum-likelihood
edited Nov 13 at 6:16
asked Nov 13 at 6:09
A.Maine
448
448
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2996375%2frelating-posterior-to-the-least-square-estimator-of-w%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown