Marginal PDF from joint PDF











up vote
1
down vote

favorite












$$f_{X,Y}(x,y)~=~begin{cases}2 & if &0< x < 1 ~,~ 0< y< x \[1ex] 0 & text{otherwise} end{cases}$$



Now I should calculate the marginal PDF's.



So I use integral and then I get:



$$f_X(x)~=~int_{0}^{1}2 ~mathrm dy~=2$$
$$f_Y(y)~=~int_{0}^{x}2 ~mathrm dx~=4$$



I just feel like I'm not doing this correct. So if any of you could help me and tell me what I am doing wrong and how to get the correct answer.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    $$f_{X,Y}(x,y)~=~begin{cases}2 & if &0< x < 1 ~,~ 0< y< x \[1ex] 0 & text{otherwise} end{cases}$$



    Now I should calculate the marginal PDF's.



    So I use integral and then I get:



    $$f_X(x)~=~int_{0}^{1}2 ~mathrm dy~=2$$
    $$f_Y(y)~=~int_{0}^{x}2 ~mathrm dx~=4$$



    I just feel like I'm not doing this correct. So if any of you could help me and tell me what I am doing wrong and how to get the correct answer.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      $$f_{X,Y}(x,y)~=~begin{cases}2 & if &0< x < 1 ~,~ 0< y< x \[1ex] 0 & text{otherwise} end{cases}$$



      Now I should calculate the marginal PDF's.



      So I use integral and then I get:



      $$f_X(x)~=~int_{0}^{1}2 ~mathrm dy~=2$$
      $$f_Y(y)~=~int_{0}^{x}2 ~mathrm dx~=4$$



      I just feel like I'm not doing this correct. So if any of you could help me and tell me what I am doing wrong and how to get the correct answer.










      share|cite|improve this question













      $$f_{X,Y}(x,y)~=~begin{cases}2 & if &0< x < 1 ~,~ 0< y< x \[1ex] 0 & text{otherwise} end{cases}$$



      Now I should calculate the marginal PDF's.



      So I use integral and then I get:



      $$f_X(x)~=~int_{0}^{1}2 ~mathrm dy~=2$$
      $$f_Y(y)~=~int_{0}^{x}2 ~mathrm dx~=4$$



      I just feel like I'm not doing this correct. So if any of you could help me and tell me what I am doing wrong and how to get the correct answer.







      statistics density-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      MiMaKo

      588




      588






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Observe that $$f_{X,Y}=2mathbf1_{(0,1)}(x)mathbf1_{(0,x)}(y)$$



          For $xin(0,1)$ we get:
          $$f_X(x)=int f_{X,Y}(x,y)dy=int_0^x2dy=2x$$
          For $xnotin(0,1)$ the integrand is $0$ so then $f_X(x)=0$.



          For $yin(0,1)$ we get:
          $$f_Y(y)=int f_{X,Y}(x,y)dx=int_y^12dy=2(1-y)$$
          For $ynotin(0,1)$ the integrand is $0$ so then $f_Y(y)=0$.






          share|cite|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995260%2fmarginal-pdf-from-joint-pdf%23new-answer', 'question_page');
            }
            );

            Post as a guest
































            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Observe that $$f_{X,Y}=2mathbf1_{(0,1)}(x)mathbf1_{(0,x)}(y)$$



            For $xin(0,1)$ we get:
            $$f_X(x)=int f_{X,Y}(x,y)dy=int_0^x2dy=2x$$
            For $xnotin(0,1)$ the integrand is $0$ so then $f_X(x)=0$.



            For $yin(0,1)$ we get:
            $$f_Y(y)=int f_{X,Y}(x,y)dx=int_y^12dy=2(1-y)$$
            For $ynotin(0,1)$ the integrand is $0$ so then $f_Y(y)=0$.






            share|cite|improve this answer



























              up vote
              1
              down vote



              accepted










              Observe that $$f_{X,Y}=2mathbf1_{(0,1)}(x)mathbf1_{(0,x)}(y)$$



              For $xin(0,1)$ we get:
              $$f_X(x)=int f_{X,Y}(x,y)dy=int_0^x2dy=2x$$
              For $xnotin(0,1)$ the integrand is $0$ so then $f_X(x)=0$.



              For $yin(0,1)$ we get:
              $$f_Y(y)=int f_{X,Y}(x,y)dx=int_y^12dy=2(1-y)$$
              For $ynotin(0,1)$ the integrand is $0$ so then $f_Y(y)=0$.






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Observe that $$f_{X,Y}=2mathbf1_{(0,1)}(x)mathbf1_{(0,x)}(y)$$



                For $xin(0,1)$ we get:
                $$f_X(x)=int f_{X,Y}(x,y)dy=int_0^x2dy=2x$$
                For $xnotin(0,1)$ the integrand is $0$ so then $f_X(x)=0$.



                For $yin(0,1)$ we get:
                $$f_Y(y)=int f_{X,Y}(x,y)dx=int_y^12dy=2(1-y)$$
                For $ynotin(0,1)$ the integrand is $0$ so then $f_Y(y)=0$.






                share|cite|improve this answer














                Observe that $$f_{X,Y}=2mathbf1_{(0,1)}(x)mathbf1_{(0,x)}(y)$$



                For $xin(0,1)$ we get:
                $$f_X(x)=int f_{X,Y}(x,y)dy=int_0^x2dy=2x$$
                For $xnotin(0,1)$ the integrand is $0$ so then $f_X(x)=0$.



                For $yin(0,1)$ we get:
                $$f_Y(y)=int f_{X,Y}(x,y)dx=int_y^12dy=2(1-y)$$
                For $ynotin(0,1)$ the integrand is $0$ so then $f_Y(y)=0$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited yesterday

























                answered yesterday









                drhab

                93.5k543125




                93.5k543125






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995260%2fmarginal-pdf-from-joint-pdf%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest




















































































                    Popular posts from this blog

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?

                    Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents