Energy equalities and estimates for weak solutions
up vote
1
down vote
favorite
Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations
begin{equation}
partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
end{equation}
begin{equation}
partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
end{equation}
with
begin{equation}
u = 0 text{on } partial Omega,
end{equation}
begin{equation}
text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
end{equation}
For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)
begin{equation}
int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
end{equation}
with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.
begin{equation}
int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
end{equation}
for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term
begin{equation}
int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
end{equation}
so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us
begin{equation}
int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
end{equation}
and to apply weak lower semicontinuity we would rather need something like
begin{equation}
lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
end{equation}
Thank you in advance for any hint on how to see this.
functional-analysis pde
add a comment |
up vote
1
down vote
favorite
Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations
begin{equation}
partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
end{equation}
begin{equation}
partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
end{equation}
with
begin{equation}
u = 0 text{on } partial Omega,
end{equation}
begin{equation}
text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
end{equation}
For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)
begin{equation}
int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
end{equation}
with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.
begin{equation}
int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
end{equation}
for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term
begin{equation}
int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
end{equation}
so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us
begin{equation}
int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
end{equation}
and to apply weak lower semicontinuity we would rather need something like
begin{equation}
lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
end{equation}
Thank you in advance for any hint on how to see this.
functional-analysis pde
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations
begin{equation}
partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
end{equation}
begin{equation}
partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
end{equation}
with
begin{equation}
u = 0 text{on } partial Omega,
end{equation}
begin{equation}
text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
end{equation}
For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)
begin{equation}
int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
end{equation}
with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.
begin{equation}
int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
end{equation}
for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term
begin{equation}
int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
end{equation}
so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us
begin{equation}
int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
end{equation}
and to apply weak lower semicontinuity we would rather need something like
begin{equation}
lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
end{equation}
Thank you in advance for any hint on how to see this.
functional-analysis pde
Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations
begin{equation}
partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
end{equation}
begin{equation}
partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
end{equation}
with
begin{equation}
u = 0 text{on } partial Omega,
end{equation}
begin{equation}
text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
end{equation}
For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)
begin{equation}
int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
end{equation}
with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.
begin{equation}
int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
end{equation}
for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term
begin{equation}
int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
end{equation}
so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us
begin{equation}
int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
end{equation}
and to apply weak lower semicontinuity we would rather need something like
begin{equation}
lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
end{equation}
Thank you in advance for any hint on how to see this.
functional-analysis pde
functional-analysis pde
asked 2 days ago
jason paper
10818
10818
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995502%2fenergy-equalities-and-estimates-for-weak-solutions%23new-answer', 'question_page');
}
);
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password