Energy equalities and estimates for weak solutions











up vote
1
down vote

favorite












Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations



begin{equation}
partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
end{equation}



begin{equation}
partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
end{equation}



with



begin{equation}
u = 0 text{on } partial Omega,
end{equation}



begin{equation}
text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
end{equation}



For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)



begin{equation}
int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
end{equation}



with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.



begin{equation}
int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
end{equation}



for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term



begin{equation}
int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
end{equation}



so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us



begin{equation}
int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
end{equation}



and to apply weak lower semicontinuity we would rather need something like



begin{equation}
lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
end{equation}



Thank you in advance for any hint on how to see this.










share|cite|improve this question


























    up vote
    1
    down vote

    favorite












    Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations



    begin{equation}
    partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
    end{equation}



    begin{equation}
    partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
    end{equation}



    with



    begin{equation}
    u = 0 text{on } partial Omega,
    end{equation}



    begin{equation}
    text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
    end{equation}



    For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)



    begin{equation}
    int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
    end{equation}



    with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.



    begin{equation}
    int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
    end{equation}



    for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term



    begin{equation}
    int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
    end{equation}



    so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us



    begin{equation}
    int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
    end{equation}



    and to apply weak lower semicontinuity we would rather need something like



    begin{equation}
    lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
    end{equation}



    Thank you in advance for any hint on how to see this.










    share|cite|improve this question
























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations



      begin{equation}
      partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
      end{equation}



      begin{equation}
      partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
      end{equation}



      with



      begin{equation}
      u = 0 text{on } partial Omega,
      end{equation}



      begin{equation}
      text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
      end{equation}



      For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)



      begin{equation}
      int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
      end{equation}



      with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.



      begin{equation}
      int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
      end{equation}



      for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term



      begin{equation}
      int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
      end{equation}



      so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us



      begin{equation}
      int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
      end{equation}



      and to apply weak lower semicontinuity we would rather need something like



      begin{equation}
      lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
      end{equation}



      Thank you in advance for any hint on how to see this.










      share|cite|improve this question













      Basically my question is why, when we go from classical solutions to weak solutions, we have to use energy inequalities instead of equalities. More preciscely, consider the Navier-Stokes equations



      begin{equation}
      partial _t rho + text{div}(rho u) = 0 text{in } I times Omega
      end{equation}



      begin{equation}
      partial _t (rho u) + text{div}(rho u otimes u) + nabla p(rho) - text{div}S(nabla u) = rho f text{in } ItimesOmega
      end{equation}



      with



      begin{equation}
      u = 0 text{on } partial Omega,
      end{equation}



      begin{equation}
      text{div}S(nabla u) = mu Delta u + (lambda + mu)nabla text{div}u
      end{equation}



      For classical solutions, the momentum equation is multiplied by $u$ and by the continuity equation we obtain (using integration by parts)



      begin{equation}
      int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(t)dx + int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt = int _{Omega} left(frac{1}{2}rho |u|^2 + P(rho)right)(0)dx + int _I int _Omega rho f cdot u dxdt , (*)
      end{equation}



      with $P(rho) = rho int_1^rho frac{p(z)}{z^2}dz.$ Now for solutions of the weak formulation of the momentum equation, i.e.



      begin{equation}
      int_I int _Omega rho u partial _t phi + rho u otimes u : nabla phi + p(rho)text{div}phi dxdt = int_I int_Omega mu nabla u :nabla phi + (lambda + mu) text{div}u text{div}phi - rho f phi dxdt
      end{equation}



      for all $phi in D(Itimes Omega)$ it says we have $(*)$ with $=$ replaced by $leq$ but I don't see why. It says, that the equality is lost because of the weak lower semicontinuity in the term



      begin{equation}
      int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt,
      end{equation}



      so probably we have to use an approximation $(u_n)_nsubset D(Itimes Omega)$ to the weak solution $u$ as a test function and then pass to the limit, but this would only give us



      begin{equation}
      int_I int_Omega mu nabla u :nabla u_n + (lambda + mu) text{div}u text{div}u_n
      end{equation}



      and to apply weak lower semicontinuity we would rather need something like



      begin{equation}
      lim_{n rightarrow infty}int_I int_Omega mu nabla u_n :nabla u_n + (lambda + mu) text{div}u_n text{div}u_n geq int_Iint_{Omega} mu |nabla u|^2 + (lambda + mu)|text{div}u|^2dxdt.
      end{equation}



      Thank you in advance for any hint on how to see this.







      functional-analysis pde






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      jason paper

      10818




      10818



























          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995502%2fenergy-equalities-and-estimates-for-weak-solutions%23new-answer', 'question_page');
          }
          );

          Post as a guest





































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2995502%2fenergy-equalities-and-estimates-for-weak-solutions%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          How to change which sound is reproduced for terminal bell?

          Can I use Tabulator js library in my java Spring + Thymeleaf project?

          Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents