How can I find $h(y)$?












1












$begingroup$


Given the following function
$$ f(t) = begin{cases}
t &text{for }tleq2,,\
2 &text{for } tgeq 2,,\
end{cases}
$$

and $$h'(y)=f(y),,$$
how can I find $h(y)$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You need to integrate $f(t)$
    $endgroup$
    – Patricio
    Nov 11 '18 at 18:26










  • $begingroup$
    How can I do it in this case?
    $endgroup$
    – Software_t
    Nov 11 '18 at 18:30










  • $begingroup$
    Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
    $endgroup$
    – Mohammad Zuhair Khan
    Nov 11 '18 at 18:35
















1












$begingroup$


Given the following function
$$ f(t) = begin{cases}
t &text{for }tleq2,,\
2 &text{for } tgeq 2,,\
end{cases}
$$

and $$h'(y)=f(y),,$$
how can I find $h(y)$ ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You need to integrate $f(t)$
    $endgroup$
    – Patricio
    Nov 11 '18 at 18:26










  • $begingroup$
    How can I do it in this case?
    $endgroup$
    – Software_t
    Nov 11 '18 at 18:30










  • $begingroup$
    Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
    $endgroup$
    – Mohammad Zuhair Khan
    Nov 11 '18 at 18:35














1












1








1


1



$begingroup$


Given the following function
$$ f(t) = begin{cases}
t &text{for }tleq2,,\
2 &text{for } tgeq 2,,\
end{cases}
$$

and $$h'(y)=f(y),,$$
how can I find $h(y)$ ?










share|cite|improve this question











$endgroup$




Given the following function
$$ f(t) = begin{cases}
t &text{for }tleq2,,\
2 &text{for } tgeq 2,,\
end{cases}
$$

and $$h'(y)=f(y),,$$
how can I find $h(y)$ ?







calculus integration ordinary-differential-equations functions derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 0:01









Batominovski

33.1k33293




33.1k33293










asked Nov 11 '18 at 18:24









Software_tSoftware_t

1276




1276












  • $begingroup$
    You need to integrate $f(t)$
    $endgroup$
    – Patricio
    Nov 11 '18 at 18:26










  • $begingroup$
    How can I do it in this case?
    $endgroup$
    – Software_t
    Nov 11 '18 at 18:30










  • $begingroup$
    Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
    $endgroup$
    – Mohammad Zuhair Khan
    Nov 11 '18 at 18:35


















  • $begingroup$
    You need to integrate $f(t)$
    $endgroup$
    – Patricio
    Nov 11 '18 at 18:26










  • $begingroup$
    How can I do it in this case?
    $endgroup$
    – Software_t
    Nov 11 '18 at 18:30










  • $begingroup$
    Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
    $endgroup$
    – Mohammad Zuhair Khan
    Nov 11 '18 at 18:35
















$begingroup$
You need to integrate $f(t)$
$endgroup$
– Patricio
Nov 11 '18 at 18:26




$begingroup$
You need to integrate $f(t)$
$endgroup$
– Patricio
Nov 11 '18 at 18:26












$begingroup$
How can I do it in this case?
$endgroup$
– Software_t
Nov 11 '18 at 18:30




$begingroup$
How can I do it in this case?
$endgroup$
– Software_t
Nov 11 '18 at 18:30












$begingroup$
Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
$endgroup$
– Mohammad Zuhair Khan
Nov 11 '18 at 18:35




$begingroup$
Do it case by case: $int t mathrm dt=frac12 t^2+c$ for $tle 2$ and $int 2 mathrm dt=2t+c$ for $t ge 2$
$endgroup$
– Mohammad Zuhair Khan
Nov 11 '18 at 18:35










1 Answer
1






active

oldest

votes


















0












$begingroup$

An antiderivative is not unique. So $c=h(0)$ gives
$$h(y)-h(0)=int_0^yf(t)dt=int_0^ytdt =y^2/2$$
for $yle 2$, so
$$h(y)=y^2/2+c$$
when $yle 2$. But if $y>2$,
$$h(y)-h(2)=int_2^yf(t)dt=int_2^y2dt=2(y-2).$$
Id est,
$$h(y)=h(2)+2t-4=(2^2/2+c)+2y-4=2y-2+c$$
when $y>2$. (You should check btw that $h$ is differentiable, and it is.)






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994214%2fhow-can-i-find-hy%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    An antiderivative is not unique. So $c=h(0)$ gives
    $$h(y)-h(0)=int_0^yf(t)dt=int_0^ytdt =y^2/2$$
    for $yle 2$, so
    $$h(y)=y^2/2+c$$
    when $yle 2$. But if $y>2$,
    $$h(y)-h(2)=int_2^yf(t)dt=int_2^y2dt=2(y-2).$$
    Id est,
    $$h(y)=h(2)+2t-4=(2^2/2+c)+2y-4=2y-2+c$$
    when $y>2$. (You should check btw that $h$ is differentiable, and it is.)






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      An antiderivative is not unique. So $c=h(0)$ gives
      $$h(y)-h(0)=int_0^yf(t)dt=int_0^ytdt =y^2/2$$
      for $yle 2$, so
      $$h(y)=y^2/2+c$$
      when $yle 2$. But if $y>2$,
      $$h(y)-h(2)=int_2^yf(t)dt=int_2^y2dt=2(y-2).$$
      Id est,
      $$h(y)=h(2)+2t-4=(2^2/2+c)+2y-4=2y-2+c$$
      when $y>2$. (You should check btw that $h$ is differentiable, and it is.)






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        An antiderivative is not unique. So $c=h(0)$ gives
        $$h(y)-h(0)=int_0^yf(t)dt=int_0^ytdt =y^2/2$$
        for $yle 2$, so
        $$h(y)=y^2/2+c$$
        when $yle 2$. But if $y>2$,
        $$h(y)-h(2)=int_2^yf(t)dt=int_2^y2dt=2(y-2).$$
        Id est,
        $$h(y)=h(2)+2t-4=(2^2/2+c)+2y-4=2y-2+c$$
        when $y>2$. (You should check btw that $h$ is differentiable, and it is.)






        share|cite|improve this answer











        $endgroup$



        An antiderivative is not unique. So $c=h(0)$ gives
        $$h(y)-h(0)=int_0^yf(t)dt=int_0^ytdt =y^2/2$$
        for $yle 2$, so
        $$h(y)=y^2/2+c$$
        when $yle 2$. But if $y>2$,
        $$h(y)-h(2)=int_2^yf(t)dt=int_2^y2dt=2(y-2).$$
        Id est,
        $$h(y)=h(2)+2t-4=(2^2/2+c)+2y-4=2y-2+c$$
        when $y>2$. (You should check btw that $h$ is differentiable, and it is.)







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 11 '18 at 18:49

























        answered Nov 11 '18 at 18:36







        user614671





































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2994214%2fhow-can-i-find-hy%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents