Determine whether the following quadratic forms are isotropic over $mathbb{Q}$.
$begingroup$
- $q(x, y, z) = 5x^2-y^2-11z^2$
- $q(x, y, z) = 3x^2-y^2+22z^2$
So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.
Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.
Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?
number-theory p-adic-number-theory
$endgroup$
add a comment |
$begingroup$
- $q(x, y, z) = 5x^2-y^2-11z^2$
- $q(x, y, z) = 3x^2-y^2+22z^2$
So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.
Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.
Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?
number-theory p-adic-number-theory
$endgroup$
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34
add a comment |
$begingroup$
- $q(x, y, z) = 5x^2-y^2-11z^2$
- $q(x, y, z) = 3x^2-y^2+22z^2$
So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.
Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.
Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?
number-theory p-adic-number-theory
$endgroup$
- $q(x, y, z) = 5x^2-y^2-11z^2$
- $q(x, y, z) = 3x^2-y^2+22z^2$
So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.
Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.
Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?
number-theory p-adic-number-theory
number-theory p-adic-number-theory
edited Dec 12 '18 at 1:11
kmini
asked Dec 12 '18 at 1:02
kminikmini
913
913
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34
add a comment |
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$
We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Second one
$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$
In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$
For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036094%2fdetermine-whether-the-following-quadratic-forms-are-isotropic-over-mathbbq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$
We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Second one
$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$
In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$
For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$
$endgroup$
add a comment |
$begingroup$
next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$
We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Second one
$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$
In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$
For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$
$endgroup$
add a comment |
$begingroup$
next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$
We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Second one
$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$
In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$
For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$
$endgroup$
next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$
We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
Second one
$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$
In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$
For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$
edited Dec 19 '18 at 18:16
answered Dec 12 '18 at 1:43
Will JagyWill Jagy
104k5102201
104k5102201
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036094%2fdetermine-whether-the-following-quadratic-forms-are-isotropic-over-mathbbq%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21
$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28
$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31
$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34