Determine whether the following quadratic forms are isotropic over $mathbb{Q}$.












3












$begingroup$



  1. $q(x, y, z) = 5x^2-y^2-11z^2$

  2. $q(x, y, z) = 3x^2-y^2+22z^2$


So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.



Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.



Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:21










  • $begingroup$
    I don't want to find them, I just want to show they are isotropic.
    $endgroup$
    – kmini
    Dec 12 '18 at 1:28










  • $begingroup$
    What book is this from? The method, I mean.
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:31










  • $begingroup$
    Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:34
















3












$begingroup$



  1. $q(x, y, z) = 5x^2-y^2-11z^2$

  2. $q(x, y, z) = 3x^2-y^2+22z^2$


So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.



Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.



Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:21










  • $begingroup$
    I don't want to find them, I just want to show they are isotropic.
    $endgroup$
    – kmini
    Dec 12 '18 at 1:28










  • $begingroup$
    What book is this from? The method, I mean.
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:31










  • $begingroup$
    Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:34














3












3








3





$begingroup$



  1. $q(x, y, z) = 5x^2-y^2-11z^2$

  2. $q(x, y, z) = 3x^2-y^2+22z^2$


So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.



Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.



Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?










share|cite|improve this question











$endgroup$





  1. $q(x, y, z) = 5x^2-y^2-11z^2$

  2. $q(x, y, z) = 3x^2-y^2+22z^2$


So for part (1), I apply Hasse-Minkowski and check over the $mathbb{Q}_p$. It's trivial to see for $mathbb{R}$. We only need to check for $mathbb{Q}_{13}$ and $mathbb{Q}_5$ right?. Now mod 5, the equation becomes $-y^2-z^2 = 0 mod 5$ and thus there is a solution since -1 is square mod 5. Checking mod 11, this becomes $5x^2-y^2 = 0 mod 11$. Now enough to check if 5 is square mod 11. But it's clear that it is by Legendre. Thus there is a solution and the form isotropic over $mathbb{Q}$.



Part(2) is similar. We check mod 3, $-y^2+z^2 = 0 mod 3$ and clearly there is a solution. For mod 11, we have that $3x^2-y^2 = 0 mod 11$. Now 3 is a square mod 11 thus there is a solution. Thus it's isotropic over $mathbb{Q}$.



Note that for other $p$, the coefficients are units thus must be isotropic.
Am I right?







number-theory p-adic-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 12 '18 at 1:11







kmini

















asked Dec 12 '18 at 1:02









kminikmini

913




913












  • $begingroup$
    if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:21










  • $begingroup$
    I don't want to find them, I just want to show they are isotropic.
    $endgroup$
    – kmini
    Dec 12 '18 at 1:28










  • $begingroup$
    What book is this from? The method, I mean.
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:31










  • $begingroup$
    Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:34


















  • $begingroup$
    if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:21










  • $begingroup$
    I don't want to find them, I just want to show they are isotropic.
    $endgroup$
    – kmini
    Dec 12 '18 at 1:28










  • $begingroup$
    What book is this from? The method, I mean.
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:31










  • $begingroup$
    Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
    $endgroup$
    – Will Jagy
    Dec 12 '18 at 1:34
















$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21




$begingroup$
if you are correct, there are triples of integer $x,y,z$ (not all zero) for each one, that cause each form to become zero. There is a theorem that says that these integers can be found fairly small, if there are any
$endgroup$
– Will Jagy
Dec 12 '18 at 1:21












$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28




$begingroup$
I don't want to find them, I just want to show they are isotropic.
$endgroup$
– kmini
Dec 12 '18 at 1:28












$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31




$begingroup$
What book is this from? The method, I mean.
$endgroup$
– Will Jagy
Dec 12 '18 at 1:31












$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34




$begingroup$
Alright, this is Theorem 4.1, page 80 in Cassels, just part (i). On page 82 he points out that conditions (ii) and (iii) can be ignored if we know the form is indefinite
$endgroup$
– Will Jagy
Dec 12 '18 at 1:34










1 Answer
1






active

oldest

votes


















3












$begingroup$

next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$



We get infinitely many primitive solutions for the first one taking
$$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
and the genuinely different (even considering absolute values)
$$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$



=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



Second one



$$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
and the different
$$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$



In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.



=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



The example I like to show is solving
$$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
37 u^2 + 51 uv + 8 v^2 \
8 u^2 -35 uv -6 v^2 \
-6 u^2 + 23 uv + 37 v^2
end{array}
right)
$$



$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
32 u^2 + 61 uv + 18 v^2 \
18 u^2 -25 uv -11 v^2 \
-11 u^2 + 3 uv + 32 v^2
end{array}
right)
$$



$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
38 u^2 + 45 uv + 4 v^2 \
4 u^2 -37 uv -3 v^2 \
-3 u^2 + 31 uv + 38 v^2
end{array}
right)
$$



$$
left(
begin{array}{r}
x \
y \
z
end{array}
right) =
left(
begin{array}{r}
29 u^2 + 63 uv + 22 v^2 \
22 u^2 -19 uv -12 v^2 \
-12 u^2 -5 uv + 29 v^2
end{array}
right)
$$



For all four recipes,
$$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036094%2fdetermine-whether-the-following-quadratic-forms-are-isotropic-over-mathbbq%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$



    We get infinitely many primitive solutions for the first one taking
    $$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
    and the genuinely different (even considering absolute values)
    $$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$



    =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



    Second one



    $$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
    and the different
    $$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$



    In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.



    =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



    The example I like to show is solving
    $$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
    $$
    left(
    begin{array}{r}
    x \
    y \
    z
    end{array}
    right) =
    left(
    begin{array}{r}
    37 u^2 + 51 uv + 8 v^2 \
    8 u^2 -35 uv -6 v^2 \
    -6 u^2 + 23 uv + 37 v^2
    end{array}
    right)
    $$



    $$
    left(
    begin{array}{r}
    x \
    y \
    z
    end{array}
    right) =
    left(
    begin{array}{r}
    32 u^2 + 61 uv + 18 v^2 \
    18 u^2 -25 uv -11 v^2 \
    -11 u^2 + 3 uv + 32 v^2
    end{array}
    right)
    $$



    $$
    left(
    begin{array}{r}
    x \
    y \
    z
    end{array}
    right) =
    left(
    begin{array}{r}
    38 u^2 + 45 uv + 4 v^2 \
    4 u^2 -37 uv -3 v^2 \
    -3 u^2 + 31 uv + 38 v^2
    end{array}
    right)
    $$



    $$
    left(
    begin{array}{r}
    x \
    y \
    z
    end{array}
    right) =
    left(
    begin{array}{r}
    29 u^2 + 63 uv + 22 v^2 \
    22 u^2 -19 uv -12 v^2 \
    -12 u^2 -5 uv + 29 v^2
    end{array}
    right)
    $$



    For all four recipes,
    $$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$






    share|cite|improve this answer











    $endgroup$


















      3












      $begingroup$

      next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$



      We get infinitely many primitive solutions for the first one taking
      $$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
      and the genuinely different (even considering absolute values)
      $$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$



      =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



      Second one



      $$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
      and the different
      $$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$



      In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.



      =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



      The example I like to show is solving
      $$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
      $$
      left(
      begin{array}{r}
      x \
      y \
      z
      end{array}
      right) =
      left(
      begin{array}{r}
      37 u^2 + 51 uv + 8 v^2 \
      8 u^2 -35 uv -6 v^2 \
      -6 u^2 + 23 uv + 37 v^2
      end{array}
      right)
      $$



      $$
      left(
      begin{array}{r}
      x \
      y \
      z
      end{array}
      right) =
      left(
      begin{array}{r}
      32 u^2 + 61 uv + 18 v^2 \
      18 u^2 -25 uv -11 v^2 \
      -11 u^2 + 3 uv + 32 v^2
      end{array}
      right)
      $$



      $$
      left(
      begin{array}{r}
      x \
      y \
      z
      end{array}
      right) =
      left(
      begin{array}{r}
      38 u^2 + 45 uv + 4 v^2 \
      4 u^2 -37 uv -3 v^2 \
      -3 u^2 + 31 uv + 38 v^2
      end{array}
      right)
      $$



      $$
      left(
      begin{array}{r}
      x \
      y \
      z
      end{array}
      right) =
      left(
      begin{array}{r}
      29 u^2 + 63 uv + 22 v^2 \
      22 u^2 -19 uv -12 v^2 \
      -12 u^2 -5 uv + 29 v^2
      end{array}
      right)
      $$



      For all four recipes,
      $$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$






      share|cite|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$

        next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$



        We get infinitely many primitive solutions for the first one taking
        $$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
        and the genuinely different (even considering absolute values)
        $$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$



        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



        Second one



        $$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
        and the different
        $$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$



        In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.



        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



        The example I like to show is solving
        $$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        37 u^2 + 51 uv + 8 v^2 \
        8 u^2 -35 uv -6 v^2 \
        -6 u^2 + 23 uv + 37 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        32 u^2 + 61 uv + 18 v^2 \
        18 u^2 -25 uv -11 v^2 \
        -11 u^2 + 3 uv + 32 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        38 u^2 + 45 uv + 4 v^2 \
        4 u^2 -37 uv -3 v^2 \
        -3 u^2 + 31 uv + 38 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        29 u^2 + 63 uv + 22 v^2 \
        22 u^2 -19 uv -12 v^2 \
        -12 u^2 -5 uv + 29 v^2
        end{array}
        right)
        $$



        For all four recipes,
        $$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$






        share|cite|improve this answer











        $endgroup$



        next day: those recipes below give all primitive. Two small solutions to $5x^2 = y^2 + 11 z^2$ are $(2,3,1)$ and $(3,1,2).$ Two small solutions to $y^2 = 3x^2 + 22 z^2$ are $(1,5,1)$ and $(3,7,1).$



        We get infinitely many primitive solutions for the first one taking
        $$ x = 5 u^2 + 6 uv + 4 v^2 ; ; , ; ; y = 9 u^2 + 2 uv -6 v^2 ; ; , ; ; z = 2 u^2 + 6 uv + 2 v^2 ; ; , ; ; $$
        and the genuinely different (even considering absolute values)
        $$ x = 6 u^2 + 2 uv + 2 v^2 ; ; , ; ; y = 13 u^2 + 8 uv -3 v^2 ; ; , ; ; z = u^2 -4 uv - v^2 ; ; . ; ; $$



        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



        Second one



        $$ x = 3 u^2 + 8 uv -2 v^2 ; ; , ; ; y = 7 u^2 + 4 uv + 10 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; , ; ; $$
        and the different
        $$ x = u^2 + 8 uv -6 v^2 ; ; , ; ; y = 5 u^2 - 4 uv + 14 v^2 ; ; , ; ; z = u^2 - 2 uv - 2 v^2 ; ; . ; ; $$



        In both cases you may take absolute values of $x,y,z$ as there are no mixed terms.



        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



        The example I like to show is solving
        $$ 2(x^2 + y^2 + z^2) - 113(yz + zx + xy)=0, $$ four "recipes,"
        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        37 u^2 + 51 uv + 8 v^2 \
        8 u^2 -35 uv -6 v^2 \
        -6 u^2 + 23 uv + 37 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        32 u^2 + 61 uv + 18 v^2 \
        18 u^2 -25 uv -11 v^2 \
        -11 u^2 + 3 uv + 32 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        38 u^2 + 45 uv + 4 v^2 \
        4 u^2 -37 uv -3 v^2 \
        -3 u^2 + 31 uv + 38 v^2
        end{array}
        right)
        $$



        $$
        left(
        begin{array}{r}
        x \
        y \
        z
        end{array}
        right) =
        left(
        begin{array}{r}
        29 u^2 + 63 uv + 22 v^2 \
        22 u^2 -19 uv -12 v^2 \
        -12 u^2 -5 uv + 29 v^2
        end{array}
        right)
        $$



        For all four recipes,
        $$ x^2 + y^2 + z^2 = 1469 left( u^2 + uv + v^2 right)^2 $$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 19 '18 at 18:16

























        answered Dec 12 '18 at 1:43









        Will JagyWill Jagy

        104k5102201




        104k5102201






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3036094%2fdetermine-whether-the-following-quadratic-forms-are-isotropic-over-mathbbq%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?