Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$
Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )
Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$
Given $x=frac{pi}{4}$
sequences-and-series taylor-expansion
add a comment |
Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )
Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$
Given $x=frac{pi}{4}$
sequences-and-series taylor-expansion
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11
add a comment |
Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )
Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$
Given $x=frac{pi}{4}$
sequences-and-series taylor-expansion
Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )
Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$
Given $x=frac{pi}{4}$
sequences-and-series taylor-expansion
sequences-and-series taylor-expansion
edited Nov 20 at 12:09
Bernard
118k639112
118k639112
asked Nov 20 at 12:08
Henias
615
615
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11
add a comment |
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11
add a comment |
1 Answer
1
active
oldest
votes
Hint:
Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$
Edit for completion:
For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006243%2fshow-that-ln-2-approx-frac-pi216-bigl1-frac-pi296-bigr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint:
Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$
Edit for completion:
For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$
add a comment |
Hint:
Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$
Edit for completion:
For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$
add a comment |
Hint:
Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$
Edit for completion:
For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$
Hint:
Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$
Edit for completion:
For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$
edited Nov 21 at 16:58
answered Nov 20 at 12:13
cansomeonehelpmeout
6,6433834
6,6433834
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006243%2fshow-that-ln-2-approx-frac-pi216-bigl1-frac-pi296-bigr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11
Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11