Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$












0














Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )



Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$



Given $x=frac{pi}{4}$










share|cite|improve this question
























  • well $ln 2approx x$, to any $xinBbb C$
    – Masacroso
    Nov 20 at 12:11












  • Hint: $2=frac1{1/2}$
    – Arthur
    Nov 20 at 12:11
















0














Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )



Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$



Given $x=frac{pi}{4}$










share|cite|improve this question
























  • well $ln 2approx x$, to any $xinBbb C$
    – Masacroso
    Nov 20 at 12:11












  • Hint: $2=frac1{1/2}$
    – Arthur
    Nov 20 at 12:11














0












0








0







Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )



Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$



Given $x=frac{pi}{4}$










share|cite|improve this question















Show the Maclaurin Series for $ln(cos x)=-frac{1}{2}x^2-frac{1}{12}x^4 + ...$ (1st part of the question already worked out )



Show that $ln 2 approx frac{pi^2}{16}Bigl(1+frac{pi^2}{96}Bigr)$



Given $x=frac{pi}{4}$







sequences-and-series taylor-expansion






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 20 at 12:09









Bernard

118k639112




118k639112










asked Nov 20 at 12:08









Henias

615




615












  • well $ln 2approx x$, to any $xinBbb C$
    – Masacroso
    Nov 20 at 12:11












  • Hint: $2=frac1{1/2}$
    – Arthur
    Nov 20 at 12:11


















  • well $ln 2approx x$, to any $xinBbb C$
    – Masacroso
    Nov 20 at 12:11












  • Hint: $2=frac1{1/2}$
    – Arthur
    Nov 20 at 12:11
















well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11






well $ln 2approx x$, to any $xinBbb C$
– Masacroso
Nov 20 at 12:11














Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11




Hint: $2=frac1{1/2}$
– Arthur
Nov 20 at 12:11










1 Answer
1






active

oldest

votes


















4














Hint:



Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$





Edit for completion:



For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006243%2fshow-that-ln-2-approx-frac-pi216-bigl1-frac-pi296-bigr%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    Hint:



    Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$





    Edit for completion:



    For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$






    share|cite|improve this answer




























      4














      Hint:



      Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$





      Edit for completion:



      For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$






      share|cite|improve this answer


























        4












        4








        4






        Hint:



        Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$





        Edit for completion:



        For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$






        share|cite|improve this answer














        Hint:



        Since $cos(frac{pi}{4})=frac{1}{sqrt 2}$, you can write $$lnleft(frac{1}{sqrt 2}right)=ln(2^{-1/2})=-frac{1}{2}ln(2)$$





        Edit for completion:



        For small values of $cos(x)$ we have $$ln(cos x)approx-frac{1}{2}x^2-frac{1}{12}x^4tag{1}$$ When $x=frac{pi}{4}$ we get $$-frac{1}{2}ln(2)=ln(cos frac{pi}{4})approx-frac{1}{2}left(frac{pi}{4}right)^2-frac{1}{12}left(frac{pi}{4}right)^4\ln(2)approxfrac{pi^2}{16}left(1-frac{pi^2}{96}right)$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Nov 21 at 16:58

























        answered Nov 20 at 12:13









        cansomeonehelpmeout

        6,6433834




        6,6433834






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006243%2fshow-that-ln-2-approx-frac-pi216-bigl1-frac-pi296-bigr%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Can I use Tabulator js library in my java Spring + Thymeleaf project?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents