About isomorphic of a boolean algebra to bolean algebra
$begingroup$
Let $mathcal A$ be a boolean algebra. It`s non-empty subset $mathcal F$ is called a filter if $∅ notin mathcal F$, for all $A ∈ mathcal A$, $B ∈ mathcal F$ from $B ⊂ A$ follows $A ∈ mathcal F$, and for all $A, B ∈ mathcal F$ follows
$A∩B ∈ mathcal F$. A filter is said to be maximal if for all $A ∈ mathcal A$ or $A ∈ mathcal F$, or $ overline A ∈ mathcal F$. How to show that
on the set of all maximal filters one can construct a Boolean algebra isomorphic to the original Boolean algebra $mathcal A$?
abstract-algebra boolean-algebra filters
$endgroup$
add a comment |
$begingroup$
Let $mathcal A$ be a boolean algebra. It`s non-empty subset $mathcal F$ is called a filter if $∅ notin mathcal F$, for all $A ∈ mathcal A$, $B ∈ mathcal F$ from $B ⊂ A$ follows $A ∈ mathcal F$, and for all $A, B ∈ mathcal F$ follows
$A∩B ∈ mathcal F$. A filter is said to be maximal if for all $A ∈ mathcal A$ or $A ∈ mathcal F$, or $ overline A ∈ mathcal F$. How to show that
on the set of all maximal filters one can construct a Boolean algebra isomorphic to the original Boolean algebra $mathcal A$?
abstract-algebra boolean-algebra filters
$endgroup$
1
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34
add a comment |
$begingroup$
Let $mathcal A$ be a boolean algebra. It`s non-empty subset $mathcal F$ is called a filter if $∅ notin mathcal F$, for all $A ∈ mathcal A$, $B ∈ mathcal F$ from $B ⊂ A$ follows $A ∈ mathcal F$, and for all $A, B ∈ mathcal F$ follows
$A∩B ∈ mathcal F$. A filter is said to be maximal if for all $A ∈ mathcal A$ or $A ∈ mathcal F$, or $ overline A ∈ mathcal F$. How to show that
on the set of all maximal filters one can construct a Boolean algebra isomorphic to the original Boolean algebra $mathcal A$?
abstract-algebra boolean-algebra filters
$endgroup$
Let $mathcal A$ be a boolean algebra. It`s non-empty subset $mathcal F$ is called a filter if $∅ notin mathcal F$, for all $A ∈ mathcal A$, $B ∈ mathcal F$ from $B ⊂ A$ follows $A ∈ mathcal F$, and for all $A, B ∈ mathcal F$ follows
$A∩B ∈ mathcal F$. A filter is said to be maximal if for all $A ∈ mathcal A$ or $A ∈ mathcal F$, or $ overline A ∈ mathcal F$. How to show that
on the set of all maximal filters one can construct a Boolean algebra isomorphic to the original Boolean algebra $mathcal A$?
abstract-algebra boolean-algebra filters
abstract-algebra boolean-algebra filters
asked Dec 11 '18 at 5:15
LisaLisa
275
275
1
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34
add a comment |
1
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34
1
1
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034920%2fabout-isomorphic-of-a-boolean-algebra-to-bolean-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3034920%2fabout-isomorphic-of-a-boolean-algebra-to-bolean-algebra%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
read up on Stone duality. e.g. chapter 2 here
$endgroup$
– Henno Brandsma
Dec 11 '18 at 5:34