Show that the functional $F$ on $L_p(-1,1)$ given by $ F(f) = int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt $ is...
$begingroup$
I have to show that the functional $F$: $$ F(f) = int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt $$
on the space $L_p(-1, 1), pgeqslant 1 $, is continuous.
Solution:
I need to get an inequality $$ vert F(f) vert le M left(int_{-1}^1 bigvert f(t)big vert ^p dtright)^{1/p}.$$
Here $M$ is a constant and $M>0$.
I started:
$$bigvert F(f) bigvert=leftvert int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt rightvert .$$
And here I stopped. Next I have to evaluate these two integrals by new $int_{-1}^1 g(t)dt$ function and here I have a problem with this. The next step is to use the Hölder's inequality to get the inequality I need to show (with $M>0$).
Question:
How to find $int_{-1}^1 g(t)dt$?
functional-analysis functions inequality continuity lp-spaces
$endgroup$
add a comment |
$begingroup$
I have to show that the functional $F$: $$ F(f) = int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt $$
on the space $L_p(-1, 1), pgeqslant 1 $, is continuous.
Solution:
I need to get an inequality $$ vert F(f) vert le M left(int_{-1}^1 bigvert f(t)big vert ^p dtright)^{1/p}.$$
Here $M$ is a constant and $M>0$.
I started:
$$bigvert F(f) bigvert=leftvert int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt rightvert .$$
And here I stopped. Next I have to evaluate these two integrals by new $int_{-1}^1 g(t)dt$ function and here I have a problem with this. The next step is to use the Hölder's inequality to get the inequality I need to show (with $M>0$).
Question:
How to find $int_{-1}^1 g(t)dt$?
functional-analysis functions inequality continuity lp-spaces
$endgroup$
2
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52
add a comment |
$begingroup$
I have to show that the functional $F$: $$ F(f) = int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt $$
on the space $L_p(-1, 1), pgeqslant 1 $, is continuous.
Solution:
I need to get an inequality $$ vert F(f) vert le M left(int_{-1}^1 bigvert f(t)big vert ^p dtright)^{1/p}.$$
Here $M$ is a constant and $M>0$.
I started:
$$bigvert F(f) bigvert=leftvert int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt rightvert .$$
And here I stopped. Next I have to evaluate these two integrals by new $int_{-1}^1 g(t)dt$ function and here I have a problem with this. The next step is to use the Hölder's inequality to get the inequality I need to show (with $M>0$).
Question:
How to find $int_{-1}^1 g(t)dt$?
functional-analysis functions inequality continuity lp-spaces
$endgroup$
I have to show that the functional $F$: $$ F(f) = int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt $$
on the space $L_p(-1, 1), pgeqslant 1 $, is continuous.
Solution:
I need to get an inequality $$ vert F(f) vert le M left(int_{-1}^1 bigvert f(t)big vert ^p dtright)^{1/p}.$$
Here $M$ is a constant and $M>0$.
I started:
$$bigvert F(f) bigvert=leftvert int_{-1}^0 f(t)dt - int_{0}^1 f(t)dt rightvert .$$
And here I stopped. Next I have to evaluate these two integrals by new $int_{-1}^1 g(t)dt$ function and here I have a problem with this. The next step is to use the Hölder's inequality to get the inequality I need to show (with $M>0$).
Question:
How to find $int_{-1}^1 g(t)dt$?
functional-analysis functions inequality continuity lp-spaces
functional-analysis functions inequality continuity lp-spaces
edited Dec 11 '18 at 21:27
Batominovski
33.1k33293
33.1k33293
asked Dec 11 '18 at 20:44
PhilipPhilip
857
857
2
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52
add a comment |
2
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52
2
2
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Using the Triangle Inequality, we have
$$big|F(f)big|leq int_{-1}^{+1},big|f(x)big|,text{d}xtext{ for each }fin L^pbig((-1,+1)big),.$$
By Hölder's Inequality,
$$begin{align}int_{-1}^{+1},big|f(x)big|,text{d}x&=int_{-1}^{+1},big|f(x)big|cdot 1,text{d}x\&leq left(int_{-1}^{+1},big|f(x)big|^p,text{d}xright)^{frac{1}{p}},left(int_{-1}^{+1},1^q,text{d}xright)^{frac{1}{q}}text{ for each }fin L^pbig((-1,+1)big),,end{align}$$
where $qin[1,infty]$ is such that $dfrac1p+dfrac1q=1$. This shows that
$$big|F(f)big|leq |f|_p,2^{frac{1}{q}}=2^{1-frac1p},|f|_ptext{ for each }fin L^pbig((-1,+1)big),,$$
or
$$|F|_{L^p_text{op}}leq 2^{1-frac1p},.$$
By taking $f:(-1,+1)tomathbb{C}$ to be the step function
$$f(x)=begin{cases}-1&text{if }-1<x<0,,\+1&text{if }0leq x <+1,,end{cases}$$
we can see that the operator norm $|F|_{L^p_text{op}}$ of $F$ does indeed equal $2^{1-frac1p}$ (thus, $F$ is a bounded linear functional, whence continuous). With a little tweak, this result is also true for $p=infty$, not just $pin[1,infty)$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035792%2fshow-that-the-functional-f-on-l-p-1-1-given-by-ff-int-10-ftdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Using the Triangle Inequality, we have
$$big|F(f)big|leq int_{-1}^{+1},big|f(x)big|,text{d}xtext{ for each }fin L^pbig((-1,+1)big),.$$
By Hölder's Inequality,
$$begin{align}int_{-1}^{+1},big|f(x)big|,text{d}x&=int_{-1}^{+1},big|f(x)big|cdot 1,text{d}x\&leq left(int_{-1}^{+1},big|f(x)big|^p,text{d}xright)^{frac{1}{p}},left(int_{-1}^{+1},1^q,text{d}xright)^{frac{1}{q}}text{ for each }fin L^pbig((-1,+1)big),,end{align}$$
where $qin[1,infty]$ is such that $dfrac1p+dfrac1q=1$. This shows that
$$big|F(f)big|leq |f|_p,2^{frac{1}{q}}=2^{1-frac1p},|f|_ptext{ for each }fin L^pbig((-1,+1)big),,$$
or
$$|F|_{L^p_text{op}}leq 2^{1-frac1p},.$$
By taking $f:(-1,+1)tomathbb{C}$ to be the step function
$$f(x)=begin{cases}-1&text{if }-1<x<0,,\+1&text{if }0leq x <+1,,end{cases}$$
we can see that the operator norm $|F|_{L^p_text{op}}$ of $F$ does indeed equal $2^{1-frac1p}$ (thus, $F$ is a bounded linear functional, whence continuous). With a little tweak, this result is also true for $p=infty$, not just $pin[1,infty)$.
$endgroup$
add a comment |
$begingroup$
Using the Triangle Inequality, we have
$$big|F(f)big|leq int_{-1}^{+1},big|f(x)big|,text{d}xtext{ for each }fin L^pbig((-1,+1)big),.$$
By Hölder's Inequality,
$$begin{align}int_{-1}^{+1},big|f(x)big|,text{d}x&=int_{-1}^{+1},big|f(x)big|cdot 1,text{d}x\&leq left(int_{-1}^{+1},big|f(x)big|^p,text{d}xright)^{frac{1}{p}},left(int_{-1}^{+1},1^q,text{d}xright)^{frac{1}{q}}text{ for each }fin L^pbig((-1,+1)big),,end{align}$$
where $qin[1,infty]$ is such that $dfrac1p+dfrac1q=1$. This shows that
$$big|F(f)big|leq |f|_p,2^{frac{1}{q}}=2^{1-frac1p},|f|_ptext{ for each }fin L^pbig((-1,+1)big),,$$
or
$$|F|_{L^p_text{op}}leq 2^{1-frac1p},.$$
By taking $f:(-1,+1)tomathbb{C}$ to be the step function
$$f(x)=begin{cases}-1&text{if }-1<x<0,,\+1&text{if }0leq x <+1,,end{cases}$$
we can see that the operator norm $|F|_{L^p_text{op}}$ of $F$ does indeed equal $2^{1-frac1p}$ (thus, $F$ is a bounded linear functional, whence continuous). With a little tweak, this result is also true for $p=infty$, not just $pin[1,infty)$.
$endgroup$
add a comment |
$begingroup$
Using the Triangle Inequality, we have
$$big|F(f)big|leq int_{-1}^{+1},big|f(x)big|,text{d}xtext{ for each }fin L^pbig((-1,+1)big),.$$
By Hölder's Inequality,
$$begin{align}int_{-1}^{+1},big|f(x)big|,text{d}x&=int_{-1}^{+1},big|f(x)big|cdot 1,text{d}x\&leq left(int_{-1}^{+1},big|f(x)big|^p,text{d}xright)^{frac{1}{p}},left(int_{-1}^{+1},1^q,text{d}xright)^{frac{1}{q}}text{ for each }fin L^pbig((-1,+1)big),,end{align}$$
where $qin[1,infty]$ is such that $dfrac1p+dfrac1q=1$. This shows that
$$big|F(f)big|leq |f|_p,2^{frac{1}{q}}=2^{1-frac1p},|f|_ptext{ for each }fin L^pbig((-1,+1)big),,$$
or
$$|F|_{L^p_text{op}}leq 2^{1-frac1p},.$$
By taking $f:(-1,+1)tomathbb{C}$ to be the step function
$$f(x)=begin{cases}-1&text{if }-1<x<0,,\+1&text{if }0leq x <+1,,end{cases}$$
we can see that the operator norm $|F|_{L^p_text{op}}$ of $F$ does indeed equal $2^{1-frac1p}$ (thus, $F$ is a bounded linear functional, whence continuous). With a little tweak, this result is also true for $p=infty$, not just $pin[1,infty)$.
$endgroup$
Using the Triangle Inequality, we have
$$big|F(f)big|leq int_{-1}^{+1},big|f(x)big|,text{d}xtext{ for each }fin L^pbig((-1,+1)big),.$$
By Hölder's Inequality,
$$begin{align}int_{-1}^{+1},big|f(x)big|,text{d}x&=int_{-1}^{+1},big|f(x)big|cdot 1,text{d}x\&leq left(int_{-1}^{+1},big|f(x)big|^p,text{d}xright)^{frac{1}{p}},left(int_{-1}^{+1},1^q,text{d}xright)^{frac{1}{q}}text{ for each }fin L^pbig((-1,+1)big),,end{align}$$
where $qin[1,infty]$ is such that $dfrac1p+dfrac1q=1$. This shows that
$$big|F(f)big|leq |f|_p,2^{frac{1}{q}}=2^{1-frac1p},|f|_ptext{ for each }fin L^pbig((-1,+1)big),,$$
or
$$|F|_{L^p_text{op}}leq 2^{1-frac1p},.$$
By taking $f:(-1,+1)tomathbb{C}$ to be the step function
$$f(x)=begin{cases}-1&text{if }-1<x<0,,\+1&text{if }0leq x <+1,,end{cases}$$
we can see that the operator norm $|F|_{L^p_text{op}}$ of $F$ does indeed equal $2^{1-frac1p}$ (thus, $F$ is a bounded linear functional, whence continuous). With a little tweak, this result is also true for $p=infty$, not just $pin[1,infty)$.
edited Dec 12 '18 at 0:55
answered Dec 11 '18 at 21:14
BatominovskiBatominovski
33.1k33293
33.1k33293
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3035792%2fshow-that-the-functional-f-on-l-p-1-1-given-by-ff-int-10-ftdt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Is there a reason to write $$F(f)=int_{-1}^0,f(t),text{d}t+int_0^1,f(t),text{d}t$$ instead of just $$F(f)=int_{-1}^1,f(t),text{d}t,?$$ (That is, did you make any typo?)
$endgroup$
– Batominovski
Dec 11 '18 at 20:49
$begingroup$
Oh.. sorry, $-$ have to be there
$endgroup$
– Philip
Dec 11 '18 at 20:52