Proving $Imoperatorname{Li}_2(sqrt i(sqrt 2-1))=frac34G+frac18piln(sqrt2-1)$
$begingroup$
$newcommand{Li}{operatorname{Li}_2}$
I found, numerically, that $$ImLi(sqrt i(sqrt 2-1))=frac34G+frac18piln(sqrt2-1).$$
How can we prove it?
My attempt of proving this equation:
Using identity $$Li(x)=int_0^1frac{x}{xt-1}ln tdt,$$
we can deduce$$begin{align}ImLi(sqrt i(sqrt 2-1))&=frac1{2i}int_0^1left(frac{sqrt i(sqrt2-1)}{sqrt i(sqrt2-1)t-1}-frac{sqrt {-i}(sqrt2-1)}{sqrt {-i}(sqrt2-1)t-1}right)ln tdt\
&=int_0^1frac{2-sqrt{2}}{left(4 sqrt{2}-6right) t^2-2 left(sqrt{2}-2right) t-2}ln tdt\
&=int_0^{2-sqrt2}-frac{1}{u^2-2u+2}lnfrac u{2-sqrt 2}du\
&=frac18piln(2-sqrt2)-int_{-1}^{1-sqrt2}frac{ln(v+1)}{v^2+1}dv\
&=frac18piln(2-sqrt2)-int_{pi/8}^{pi/4}ln(1-tan x)dx\
&=frac18piln(sqrt2-1)-int_{pi/8}^{pi/4}lnsec x+lnsinleft(fracpi4-xright)dx\
end{align}$$
I have no idea how to deal with the log-trig integral.
calculus definite-integrals polylogarithm
$endgroup$
|
show 1 more comment
$begingroup$
$newcommand{Li}{operatorname{Li}_2}$
I found, numerically, that $$ImLi(sqrt i(sqrt 2-1))=frac34G+frac18piln(sqrt2-1).$$
How can we prove it?
My attempt of proving this equation:
Using identity $$Li(x)=int_0^1frac{x}{xt-1}ln tdt,$$
we can deduce$$begin{align}ImLi(sqrt i(sqrt 2-1))&=frac1{2i}int_0^1left(frac{sqrt i(sqrt2-1)}{sqrt i(sqrt2-1)t-1}-frac{sqrt {-i}(sqrt2-1)}{sqrt {-i}(sqrt2-1)t-1}right)ln tdt\
&=int_0^1frac{2-sqrt{2}}{left(4 sqrt{2}-6right) t^2-2 left(sqrt{2}-2right) t-2}ln tdt\
&=int_0^{2-sqrt2}-frac{1}{u^2-2u+2}lnfrac u{2-sqrt 2}du\
&=frac18piln(2-sqrt2)-int_{-1}^{1-sqrt2}frac{ln(v+1)}{v^2+1}dv\
&=frac18piln(2-sqrt2)-int_{pi/8}^{pi/4}ln(1-tan x)dx\
&=frac18piln(sqrt2-1)-int_{pi/8}^{pi/4}lnsec x+lnsinleft(fracpi4-xright)dx\
end{align}$$
I have no idea how to deal with the log-trig integral.
calculus definite-integrals polylogarithm
$endgroup$
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30
|
show 1 more comment
$begingroup$
$newcommand{Li}{operatorname{Li}_2}$
I found, numerically, that $$ImLi(sqrt i(sqrt 2-1))=frac34G+frac18piln(sqrt2-1).$$
How can we prove it?
My attempt of proving this equation:
Using identity $$Li(x)=int_0^1frac{x}{xt-1}ln tdt,$$
we can deduce$$begin{align}ImLi(sqrt i(sqrt 2-1))&=frac1{2i}int_0^1left(frac{sqrt i(sqrt2-1)}{sqrt i(sqrt2-1)t-1}-frac{sqrt {-i}(sqrt2-1)}{sqrt {-i}(sqrt2-1)t-1}right)ln tdt\
&=int_0^1frac{2-sqrt{2}}{left(4 sqrt{2}-6right) t^2-2 left(sqrt{2}-2right) t-2}ln tdt\
&=int_0^{2-sqrt2}-frac{1}{u^2-2u+2}lnfrac u{2-sqrt 2}du\
&=frac18piln(2-sqrt2)-int_{-1}^{1-sqrt2}frac{ln(v+1)}{v^2+1}dv\
&=frac18piln(2-sqrt2)-int_{pi/8}^{pi/4}ln(1-tan x)dx\
&=frac18piln(sqrt2-1)-int_{pi/8}^{pi/4}lnsec x+lnsinleft(fracpi4-xright)dx\
end{align}$$
I have no idea how to deal with the log-trig integral.
calculus definite-integrals polylogarithm
$endgroup$
$newcommand{Li}{operatorname{Li}_2}$
I found, numerically, that $$ImLi(sqrt i(sqrt 2-1))=frac34G+frac18piln(sqrt2-1).$$
How can we prove it?
My attempt of proving this equation:
Using identity $$Li(x)=int_0^1frac{x}{xt-1}ln tdt,$$
we can deduce$$begin{align}ImLi(sqrt i(sqrt 2-1))&=frac1{2i}int_0^1left(frac{sqrt i(sqrt2-1)}{sqrt i(sqrt2-1)t-1}-frac{sqrt {-i}(sqrt2-1)}{sqrt {-i}(sqrt2-1)t-1}right)ln tdt\
&=int_0^1frac{2-sqrt{2}}{left(4 sqrt{2}-6right) t^2-2 left(sqrt{2}-2right) t-2}ln tdt\
&=int_0^{2-sqrt2}-frac{1}{u^2-2u+2}lnfrac u{2-sqrt 2}du\
&=frac18piln(2-sqrt2)-int_{-1}^{1-sqrt2}frac{ln(v+1)}{v^2+1}dv\
&=frac18piln(2-sqrt2)-int_{pi/8}^{pi/4}ln(1-tan x)dx\
&=frac18piln(sqrt2-1)-int_{pi/8}^{pi/4}lnsec x+lnsinleft(fracpi4-xright)dx\
end{align}$$
I have no idea how to deal with the log-trig integral.
calculus definite-integrals polylogarithm
calculus definite-integrals polylogarithm
asked Dec 7 '18 at 11:17
Kemono ChenKemono Chen
3,1941844
3,1941844
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30
|
show 1 more comment
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
$newcommand{Cl}{operatorname{Cl}}$In order to dodge the extensive usage of the Fourier Series Expansions I will use the Clausen Function $Cl_2(z)$ to shorten things up; nevertheless the result will remain the same as one could get going all along the long way. Anyway, the only difficulty that remains after your attempt is the evaluation of the following integral
$$mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}xtag1$$
First of all I will do a bit of reshaping to actually apply useful formulae involving the Clausen Function. Therefore split up the first integral and enforce the substitution $x+fracpi4mapsto x$ within the second integral to get
$$begin{align*}
mathfrak{I}&=-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{pi/8}^{pi/4}logleft(cos x+frac pi4right)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{3pi/8}^{pi/2}log(cos x)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_0^{pi/2}log(cos x)mathrm{d}x+int_0^{3pi/8}log(cos x)mathrm{d}x
end{align*}$$
Now it is time to apply the first useful formula of the Clausen Function, namely
$$int_0^t log(cos x)mathrm{d}x~=~frac12Cl_2(pi-2t)-tlog(2)tag2$$
Formula $(2)$ can be shown rather easy be utilizing the well-known Fourier Series Expansion of $log(cos x)$ combined with the series representation of the $Cl_2(z)$ function. However, with this knowledge we can rewrite the integrals from above in terms of the Clausen Function to get
$$begin{align*}
mathfrak{I}&=frac12Cl_2left(pi-2fracpi4right)-frac12Cl_2left(pi-2fracpi8right)-frac12Cl_2left(pi-2fracpi2right)+frac12Cl_2left(pi-2frac{3pi}8right)\
&~~~underbrace{-fracpi4log(2)+fracpi8log(2)+fracpi2log(2)-frac{3pi}8log(2)}_{=0}\
&=frac12left[Cl_2left(fracpi2right)-Cl_2left(0right)+Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)right]
end{align*}$$
We are almost done! It is time to throw some more important formulae in: firstly the already mentioned series representation and secondly the so-called Duplication Formula
$$begin{align*}
Cl_2(z)~&=~sum_{n=1}^infty frac{sin(nz)}{n^2}tag3\
Cl_2(2z)~&=~2Cl_2(z)-2Cl_2(pi-z)tag4
end{align*}$$
From $(3)$ we can direcetly conclude that $Cl_2left(fracpi2right)=G$ and that $Cl_2(0)=0$ where $G$ denotes Catalan's Constant. Using the $(4)$ with $z=fracpi4$ we get a representation for the other terms from above. Putting this all together gives us the final value
$$begin{align*}
mathfrak{I}&=frac12left[underbrace{Cl_2left(fracpi2right)}_{=G}-underbrace{Cl_2left(0right)}_{=0}+underbrace{Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)}_{=frac G2}right]\
&=frac12left[G+frac G2right]
end{align*}$$
$$therefore~mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x~=~frac34 G$$
I recommend to study the Clausen Function hence it reduces the number of caculations needed for linear logarithmo-trigonometric integrals tremendously. If you are feeling uncomfortable with a part of the proof let me know and I will try to clear your doubts.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029789%2fproving-im-operatornameli-2-sqrt-i-sqrt-2-1-frac34g-frac18-pi-ln-sqrt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$newcommand{Cl}{operatorname{Cl}}$In order to dodge the extensive usage of the Fourier Series Expansions I will use the Clausen Function $Cl_2(z)$ to shorten things up; nevertheless the result will remain the same as one could get going all along the long way. Anyway, the only difficulty that remains after your attempt is the evaluation of the following integral
$$mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}xtag1$$
First of all I will do a bit of reshaping to actually apply useful formulae involving the Clausen Function. Therefore split up the first integral and enforce the substitution $x+fracpi4mapsto x$ within the second integral to get
$$begin{align*}
mathfrak{I}&=-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{pi/8}^{pi/4}logleft(cos x+frac pi4right)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{3pi/8}^{pi/2}log(cos x)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_0^{pi/2}log(cos x)mathrm{d}x+int_0^{3pi/8}log(cos x)mathrm{d}x
end{align*}$$
Now it is time to apply the first useful formula of the Clausen Function, namely
$$int_0^t log(cos x)mathrm{d}x~=~frac12Cl_2(pi-2t)-tlog(2)tag2$$
Formula $(2)$ can be shown rather easy be utilizing the well-known Fourier Series Expansion of $log(cos x)$ combined with the series representation of the $Cl_2(z)$ function. However, with this knowledge we can rewrite the integrals from above in terms of the Clausen Function to get
$$begin{align*}
mathfrak{I}&=frac12Cl_2left(pi-2fracpi4right)-frac12Cl_2left(pi-2fracpi8right)-frac12Cl_2left(pi-2fracpi2right)+frac12Cl_2left(pi-2frac{3pi}8right)\
&~~~underbrace{-fracpi4log(2)+fracpi8log(2)+fracpi2log(2)-frac{3pi}8log(2)}_{=0}\
&=frac12left[Cl_2left(fracpi2right)-Cl_2left(0right)+Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)right]
end{align*}$$
We are almost done! It is time to throw some more important formulae in: firstly the already mentioned series representation and secondly the so-called Duplication Formula
$$begin{align*}
Cl_2(z)~&=~sum_{n=1}^infty frac{sin(nz)}{n^2}tag3\
Cl_2(2z)~&=~2Cl_2(z)-2Cl_2(pi-z)tag4
end{align*}$$
From $(3)$ we can direcetly conclude that $Cl_2left(fracpi2right)=G$ and that $Cl_2(0)=0$ where $G$ denotes Catalan's Constant. Using the $(4)$ with $z=fracpi4$ we get a representation for the other terms from above. Putting this all together gives us the final value
$$begin{align*}
mathfrak{I}&=frac12left[underbrace{Cl_2left(fracpi2right)}_{=G}-underbrace{Cl_2left(0right)}_{=0}+underbrace{Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)}_{=frac G2}right]\
&=frac12left[G+frac G2right]
end{align*}$$
$$therefore~mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x~=~frac34 G$$
I recommend to study the Clausen Function hence it reduces the number of caculations needed for linear logarithmo-trigonometric integrals tremendously. If you are feeling uncomfortable with a part of the proof let me know and I will try to clear your doubts.
$endgroup$
add a comment |
$begingroup$
$newcommand{Cl}{operatorname{Cl}}$In order to dodge the extensive usage of the Fourier Series Expansions I will use the Clausen Function $Cl_2(z)$ to shorten things up; nevertheless the result will remain the same as one could get going all along the long way. Anyway, the only difficulty that remains after your attempt is the evaluation of the following integral
$$mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}xtag1$$
First of all I will do a bit of reshaping to actually apply useful formulae involving the Clausen Function. Therefore split up the first integral and enforce the substitution $x+fracpi4mapsto x$ within the second integral to get
$$begin{align*}
mathfrak{I}&=-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{pi/8}^{pi/4}logleft(cos x+frac pi4right)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{3pi/8}^{pi/2}log(cos x)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_0^{pi/2}log(cos x)mathrm{d}x+int_0^{3pi/8}log(cos x)mathrm{d}x
end{align*}$$
Now it is time to apply the first useful formula of the Clausen Function, namely
$$int_0^t log(cos x)mathrm{d}x~=~frac12Cl_2(pi-2t)-tlog(2)tag2$$
Formula $(2)$ can be shown rather easy be utilizing the well-known Fourier Series Expansion of $log(cos x)$ combined with the series representation of the $Cl_2(z)$ function. However, with this knowledge we can rewrite the integrals from above in terms of the Clausen Function to get
$$begin{align*}
mathfrak{I}&=frac12Cl_2left(pi-2fracpi4right)-frac12Cl_2left(pi-2fracpi8right)-frac12Cl_2left(pi-2fracpi2right)+frac12Cl_2left(pi-2frac{3pi}8right)\
&~~~underbrace{-fracpi4log(2)+fracpi8log(2)+fracpi2log(2)-frac{3pi}8log(2)}_{=0}\
&=frac12left[Cl_2left(fracpi2right)-Cl_2left(0right)+Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)right]
end{align*}$$
We are almost done! It is time to throw some more important formulae in: firstly the already mentioned series representation and secondly the so-called Duplication Formula
$$begin{align*}
Cl_2(z)~&=~sum_{n=1}^infty frac{sin(nz)}{n^2}tag3\
Cl_2(2z)~&=~2Cl_2(z)-2Cl_2(pi-z)tag4
end{align*}$$
From $(3)$ we can direcetly conclude that $Cl_2left(fracpi2right)=G$ and that $Cl_2(0)=0$ where $G$ denotes Catalan's Constant. Using the $(4)$ with $z=fracpi4$ we get a representation for the other terms from above. Putting this all together gives us the final value
$$begin{align*}
mathfrak{I}&=frac12left[underbrace{Cl_2left(fracpi2right)}_{=G}-underbrace{Cl_2left(0right)}_{=0}+underbrace{Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)}_{=frac G2}right]\
&=frac12left[G+frac G2right]
end{align*}$$
$$therefore~mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x~=~frac34 G$$
I recommend to study the Clausen Function hence it reduces the number of caculations needed for linear logarithmo-trigonometric integrals tremendously. If you are feeling uncomfortable with a part of the proof let me know and I will try to clear your doubts.
$endgroup$
add a comment |
$begingroup$
$newcommand{Cl}{operatorname{Cl}}$In order to dodge the extensive usage of the Fourier Series Expansions I will use the Clausen Function $Cl_2(z)$ to shorten things up; nevertheless the result will remain the same as one could get going all along the long way. Anyway, the only difficulty that remains after your attempt is the evaluation of the following integral
$$mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}xtag1$$
First of all I will do a bit of reshaping to actually apply useful formulae involving the Clausen Function. Therefore split up the first integral and enforce the substitution $x+fracpi4mapsto x$ within the second integral to get
$$begin{align*}
mathfrak{I}&=-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{pi/8}^{pi/4}logleft(cos x+frac pi4right)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{3pi/8}^{pi/2}log(cos x)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_0^{pi/2}log(cos x)mathrm{d}x+int_0^{3pi/8}log(cos x)mathrm{d}x
end{align*}$$
Now it is time to apply the first useful formula of the Clausen Function, namely
$$int_0^t log(cos x)mathrm{d}x~=~frac12Cl_2(pi-2t)-tlog(2)tag2$$
Formula $(2)$ can be shown rather easy be utilizing the well-known Fourier Series Expansion of $log(cos x)$ combined with the series representation of the $Cl_2(z)$ function. However, with this knowledge we can rewrite the integrals from above in terms of the Clausen Function to get
$$begin{align*}
mathfrak{I}&=frac12Cl_2left(pi-2fracpi4right)-frac12Cl_2left(pi-2fracpi8right)-frac12Cl_2left(pi-2fracpi2right)+frac12Cl_2left(pi-2frac{3pi}8right)\
&~~~underbrace{-fracpi4log(2)+fracpi8log(2)+fracpi2log(2)-frac{3pi}8log(2)}_{=0}\
&=frac12left[Cl_2left(fracpi2right)-Cl_2left(0right)+Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)right]
end{align*}$$
We are almost done! It is time to throw some more important formulae in: firstly the already mentioned series representation and secondly the so-called Duplication Formula
$$begin{align*}
Cl_2(z)~&=~sum_{n=1}^infty frac{sin(nz)}{n^2}tag3\
Cl_2(2z)~&=~2Cl_2(z)-2Cl_2(pi-z)tag4
end{align*}$$
From $(3)$ we can direcetly conclude that $Cl_2left(fracpi2right)=G$ and that $Cl_2(0)=0$ where $G$ denotes Catalan's Constant. Using the $(4)$ with $z=fracpi4$ we get a representation for the other terms from above. Putting this all together gives us the final value
$$begin{align*}
mathfrak{I}&=frac12left[underbrace{Cl_2left(fracpi2right)}_{=G}-underbrace{Cl_2left(0right)}_{=0}+underbrace{Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)}_{=frac G2}right]\
&=frac12left[G+frac G2right]
end{align*}$$
$$therefore~mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x~=~frac34 G$$
I recommend to study the Clausen Function hence it reduces the number of caculations needed for linear logarithmo-trigonometric integrals tremendously. If you are feeling uncomfortable with a part of the proof let me know and I will try to clear your doubts.
$endgroup$
$newcommand{Cl}{operatorname{Cl}}$In order to dodge the extensive usage of the Fourier Series Expansions I will use the Clausen Function $Cl_2(z)$ to shorten things up; nevertheless the result will remain the same as one could get going all along the long way. Anyway, the only difficulty that remains after your attempt is the evaluation of the following integral
$$mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}xtag1$$
First of all I will do a bit of reshaping to actually apply useful formulae involving the Clausen Function. Therefore split up the first integral and enforce the substitution $x+fracpi4mapsto x$ within the second integral to get
$$begin{align*}
mathfrak{I}&=-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{pi/8}^{pi/4}logleft(cos x+frac pi4right)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_{3pi/8}^{pi/2}log(cos x)mathrm{d}x\
&=int_0^{pi/4}log(cos x)mathrm{d}x-int_0^{pi/8}log(cos x)mathrm{d}x-int_0^{pi/2}log(cos x)mathrm{d}x+int_0^{3pi/8}log(cos x)mathrm{d}x
end{align*}$$
Now it is time to apply the first useful formula of the Clausen Function, namely
$$int_0^t log(cos x)mathrm{d}x~=~frac12Cl_2(pi-2t)-tlog(2)tag2$$
Formula $(2)$ can be shown rather easy be utilizing the well-known Fourier Series Expansion of $log(cos x)$ combined with the series representation of the $Cl_2(z)$ function. However, with this knowledge we can rewrite the integrals from above in terms of the Clausen Function to get
$$begin{align*}
mathfrak{I}&=frac12Cl_2left(pi-2fracpi4right)-frac12Cl_2left(pi-2fracpi8right)-frac12Cl_2left(pi-2fracpi2right)+frac12Cl_2left(pi-2frac{3pi}8right)\
&~~~underbrace{-fracpi4log(2)+fracpi8log(2)+fracpi2log(2)-frac{3pi}8log(2)}_{=0}\
&=frac12left[Cl_2left(fracpi2right)-Cl_2left(0right)+Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)right]
end{align*}$$
We are almost done! It is time to throw some more important formulae in: firstly the already mentioned series representation and secondly the so-called Duplication Formula
$$begin{align*}
Cl_2(z)~&=~sum_{n=1}^infty frac{sin(nz)}{n^2}tag3\
Cl_2(2z)~&=~2Cl_2(z)-2Cl_2(pi-z)tag4
end{align*}$$
From $(3)$ we can direcetly conclude that $Cl_2left(fracpi2right)=G$ and that $Cl_2(0)=0$ where $G$ denotes Catalan's Constant. Using the $(4)$ with $z=fracpi4$ we get a representation for the other terms from above. Putting this all together gives us the final value
$$begin{align*}
mathfrak{I}&=frac12left[underbrace{Cl_2left(fracpi2right)}_{=G}-underbrace{Cl_2left(0right)}_{=0}+underbrace{Cl_2left(fracpi4right)-Cl_2left(frac{3pi}4right)}_{=frac G2}right]\
&=frac12left[G+frac G2right]
end{align*}$$
$$therefore~mathfrak{I}~=~-int_{pi/8}^{pi/4}log(sec x)+logleft(sin fracpi4-xright)mathrm{d}x~=~frac34 G$$
I recommend to study the Clausen Function hence it reduces the number of caculations needed for linear logarithmo-trigonometric integrals tremendously. If you are feeling uncomfortable with a part of the proof let me know and I will try to clear your doubts.
edited Jan 28 at 14:28
answered Jan 4 at 19:21
mrtaurhomrtaurho
5,75551540
5,75551540
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3029789%2fproving-im-operatornameli-2-sqrt-i-sqrt-2-1-frac34g-frac18-pi-ln-sqrt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try reducing the lower limit of your integral to zero and then use the identity ; $$G = int_0^{π/4}log cot theta dtheta $$
$endgroup$
– Awe Kumar Jha
Dec 7 '18 at 11:49
$begingroup$
$logsin x$ and $logcos x$ have well-known Fourier series, and you just have to perform a termwise integration of them.
$endgroup$
– Jack D'Aurizio
Dec 7 '18 at 17:06
$begingroup$
What is $sqrt{i}$?
$endgroup$
– FDP
Dec 7 '18 at 18:14
$begingroup$
@FDP $sqrt i= e^{pi i/4}=frac{1+i}{sqrt 2}$.
$endgroup$
– Kemono Chen
Dec 8 '18 at 0:55
$begingroup$
why not begin{align}sqrt i= -e^{pi i/4}?end{align} if $x_0^2=a$ then $(-x_0)^2=a$.
$endgroup$
– FDP
Dec 8 '18 at 11:30