Evaluate:$limlimits_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k$












0












$begingroup$


Evaluate:$displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k$



MY TRY:We know that $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}=e$ and
$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$ but how can we evaluate the above$?$Thank you.



Note:The answer is $frac{1}{sqrt e}$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
    $endgroup$
    – user296113
    Jan 14 '17 at 12:58










  • $begingroup$
    Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:26










  • $begingroup$
    math.stackexchange.com/questions/441836/…
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:28
















0












$begingroup$


Evaluate:$displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k$



MY TRY:We know that $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}=e$ and
$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$ but how can we evaluate the above$?$Thank you.



Note:The answer is $frac{1}{sqrt e}$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
    $endgroup$
    – user296113
    Jan 14 '17 at 12:58










  • $begingroup$
    Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:26










  • $begingroup$
    math.stackexchange.com/questions/441836/…
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:28














0












0








0





$begingroup$


Evaluate:$displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k$



MY TRY:We know that $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}=e$ and
$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$ but how can we evaluate the above$?$Thank you.



Note:The answer is $frac{1}{sqrt e}$










share|cite|improve this question











$endgroup$




Evaluate:$displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k$



MY TRY:We know that $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}=e$ and
$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$ but how can we evaluate the above$?$Thank you.



Note:The answer is $frac{1}{sqrt e}$







real-analysis sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 7 '18 at 7:26









Martin Sleziak

44.8k10119273




44.8k10119273










asked Jan 14 '17 at 12:56









MatheMagicMatheMagic

1,4021617




1,4021617








  • 3




    $begingroup$
    We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
    $endgroup$
    – user296113
    Jan 14 '17 at 12:58










  • $begingroup$
    Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:26










  • $begingroup$
    math.stackexchange.com/questions/441836/…
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:28














  • 3




    $begingroup$
    We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
    $endgroup$
    – user296113
    Jan 14 '17 at 12:58










  • $begingroup$
    Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:26










  • $begingroup$
    math.stackexchange.com/questions/441836/…
    $endgroup$
    – Guy Fsone
    Dec 29 '17 at 19:28








3




3




$begingroup$
We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
$endgroup$
– user296113
Jan 14 '17 at 12:58




$begingroup$
We have $e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.
$endgroup$
– user296113
Jan 14 '17 at 12:58












$begingroup$
Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
$endgroup$
– Guy Fsone
Dec 29 '17 at 19:26




$begingroup$
Possible duplicate of How does $e^0 = 1$ if you define $e^x = sum_{n = 0}^infty x^n/n!$
$endgroup$
– Guy Fsone
Dec 29 '17 at 19:26












$begingroup$
math.stackexchange.com/questions/441836/…
$endgroup$
– Guy Fsone
Dec 29 '17 at 19:28




$begingroup$
math.stackexchange.com/questions/441836/…
$endgroup$
– Guy Fsone
Dec 29 '17 at 19:28










2 Answers
2






active

oldest

votes


















3












$begingroup$

HINT:



$$e^x=sum_{r=0}^inftydfrac{x^r}{r!}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Why the second hint?
    $endgroup$
    – Did
    Dec 7 '18 at 9:35










  • $begingroup$
    @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:40






  • 1




    $begingroup$
    No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
    $endgroup$
    – Did
    Dec 7 '18 at 9:45










  • $begingroup$
    @Did, I added that formula so that OP can compare that with that of $e^x$
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:50



















1












$begingroup$

We have $displaystyle e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.



So $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k=displaystylelim_{ntoinfty}sum_{k=0}^n frac{left(-frac12right)^k}{k!}=e^{frac {-1}{2}}=frac 1{sqrt e}$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2097353%2fevaluate-lim-limits-n-to-infty-sum-k-0n-frac1k-left-frac12-rightk%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    HINT:



    $$e^x=sum_{r=0}^inftydfrac{x^r}{r!}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Why the second hint?
      $endgroup$
      – Did
      Dec 7 '18 at 9:35










    • $begingroup$
      @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:40






    • 1




      $begingroup$
      No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
      $endgroup$
      – Did
      Dec 7 '18 at 9:45










    • $begingroup$
      @Did, I added that formula so that OP can compare that with that of $e^x$
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:50
















    3












    $begingroup$

    HINT:



    $$e^x=sum_{r=0}^inftydfrac{x^r}{r!}$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Why the second hint?
      $endgroup$
      – Did
      Dec 7 '18 at 9:35










    • $begingroup$
      @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:40






    • 1




      $begingroup$
      No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
      $endgroup$
      – Did
      Dec 7 '18 at 9:45










    • $begingroup$
      @Did, I added that formula so that OP can compare that with that of $e^x$
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:50














    3












    3








    3





    $begingroup$

    HINT:



    $$e^x=sum_{r=0}^inftydfrac{x^r}{r!}$$






    share|cite|improve this answer











    $endgroup$



    HINT:



    $$e^x=sum_{r=0}^inftydfrac{x^r}{r!}$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 7 '18 at 9:49

























    answered Jan 14 '17 at 12:58









    lab bhattacharjeelab bhattacharjee

    226k15158275




    226k15158275












    • $begingroup$
      Why the second hint?
      $endgroup$
      – Did
      Dec 7 '18 at 9:35










    • $begingroup$
      @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:40






    • 1




      $begingroup$
      No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
      $endgroup$
      – Did
      Dec 7 '18 at 9:45










    • $begingroup$
      @Did, I added that formula so that OP can compare that with that of $e^x$
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:50


















    • $begingroup$
      Why the second hint?
      $endgroup$
      – Did
      Dec 7 '18 at 9:35










    • $begingroup$
      @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:40






    • 1




      $begingroup$
      No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
      $endgroup$
      – Did
      Dec 7 '18 at 9:45










    • $begingroup$
      @Did, I added that formula so that OP can compare that with that of $e^x$
      $endgroup$
      – lab bhattacharjee
      Dec 7 '18 at 9:50
















    $begingroup$
    Why the second hint?
    $endgroup$
    – Did
    Dec 7 '18 at 9:35




    $begingroup$
    Why the second hint?
    $endgroup$
    – Did
    Dec 7 '18 at 9:35












    $begingroup$
    @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:40




    $begingroup$
    @Did, For $$displaystylelim_{ntoinfty}sum_{k=0}^n left(-frac12right)^k=frac 23$$ in the question
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:40




    1




    1




    $begingroup$
    No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
    $endgroup$
    – Did
    Dec 7 '18 at 9:45




    $begingroup$
    No, this is mentioned as a try and we know it leads nowhere. Adding it to your answer can only mislead the OP to think they need this fact to solve their question, while they do not.
    $endgroup$
    – Did
    Dec 7 '18 at 9:45












    $begingroup$
    @Did, I added that formula so that OP can compare that with that of $e^x$
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:50




    $begingroup$
    @Did, I added that formula so that OP can compare that with that of $e^x$
    $endgroup$
    – lab bhattacharjee
    Dec 7 '18 at 9:50











    1












    $begingroup$

    We have $displaystyle e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.



    So $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k=displaystylelim_{ntoinfty}sum_{k=0}^n frac{left(-frac12right)^k}{k!}=e^{frac {-1}{2}}=frac 1{sqrt e}$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We have $displaystyle e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.



      So $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k=displaystylelim_{ntoinfty}sum_{k=0}^n frac{left(-frac12right)^k}{k!}=e^{frac {-1}{2}}=frac 1{sqrt e}$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We have $displaystyle e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.



        So $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k=displaystylelim_{ntoinfty}sum_{k=0}^n frac{left(-frac12right)^k}{k!}=e^{frac {-1}{2}}=frac 1{sqrt e}$






        share|cite|improve this answer









        $endgroup$



        We have $displaystyle e^x=sum_{k=0}^inftyfrac{x^k}{k!}$.



        So $displaystylelim_{ntoinfty}sum_{k=0}^n frac1{k!}left(-frac12right)^k=displaystylelim_{ntoinfty}sum_{k=0}^n frac{left(-frac12right)^k}{k!}=e^{frac {-1}{2}}=frac 1{sqrt e}$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 14 '17 at 13:17









        MatheMagicMatheMagic

        1,4021617




        1,4021617






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2097353%2fevaluate-lim-limits-n-to-infty-sum-k-0n-frac1k-left-frac12-rightk%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            How to change which sound is reproduced for terminal bell?

            Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

            Can I use Tabulator js library in my java Spring + Thymeleaf project?