Prove $int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx=frac{sqrt{2}-2}{4} sqrt{pi}~ zeta left( frac{1}{2} right)$
$begingroup$
Wolfram Alpha evaluates this integral numerically as
$$int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx=0.379064 dots$$
Its value is apparently
$$frac{sqrt{2}-2}{4} sqrt{pi}~ zeta left( frac{1}{2} right)=0.37906401072dots$$
How would you solve this integral?
Obviously, we can make a substitution $t=x^2$
begin{align}
int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx&=frac{1}{2} int_0^{infty} frac{sqrt{t}}{cosh^2 (t)} dt\[10pt]
&=int_0^{infty} frac{sqrt{t}}{cosh (2t)+1} dt\[10pt]
&=frac{1}{2 sqrt{2}}int_0^{infty} frac{sqrt{u}}{cosh (u)+1} du
end{align}
We could use geometric series since $cosh (u) geq 1$, but I don't know how it will help.
calculus integration definite-integrals improper-integrals riemann-zeta
$endgroup$
add a comment |
$begingroup$
Wolfram Alpha evaluates this integral numerically as
$$int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx=0.379064 dots$$
Its value is apparently
$$frac{sqrt{2}-2}{4} sqrt{pi}~ zeta left( frac{1}{2} right)=0.37906401072dots$$
How would you solve this integral?
Obviously, we can make a substitution $t=x^2$
begin{align}
int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx&=frac{1}{2} int_0^{infty} frac{sqrt{t}}{cosh^2 (t)} dt\[10pt]
&=int_0^{infty} frac{sqrt{t}}{cosh (2t)+1} dt\[10pt]
&=frac{1}{2 sqrt{2}}int_0^{infty} frac{sqrt{u}}{cosh (u)+1} du
end{align}
We could use geometric series since $cosh (u) geq 1$, but I don't know how it will help.
calculus integration definite-integrals improper-integrals riemann-zeta
$endgroup$
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03
add a comment |
$begingroup$
Wolfram Alpha evaluates this integral numerically as
$$int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx=0.379064 dots$$
Its value is apparently
$$frac{sqrt{2}-2}{4} sqrt{pi}~ zeta left( frac{1}{2} right)=0.37906401072dots$$
How would you solve this integral?
Obviously, we can make a substitution $t=x^2$
begin{align}
int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx&=frac{1}{2} int_0^{infty} frac{sqrt{t}}{cosh^2 (t)} dt\[10pt]
&=int_0^{infty} frac{sqrt{t}}{cosh (2t)+1} dt\[10pt]
&=frac{1}{2 sqrt{2}}int_0^{infty} frac{sqrt{u}}{cosh (u)+1} du
end{align}
We could use geometric series since $cosh (u) geq 1$, but I don't know how it will help.
calculus integration definite-integrals improper-integrals riemann-zeta
$endgroup$
Wolfram Alpha evaluates this integral numerically as
$$int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx=0.379064 dots$$
Its value is apparently
$$frac{sqrt{2}-2}{4} sqrt{pi}~ zeta left( frac{1}{2} right)=0.37906401072dots$$
How would you solve this integral?
Obviously, we can make a substitution $t=x^2$
begin{align}
int_0^{infty} frac{x^2}{cosh^2 (x^2)} dx&=frac{1}{2} int_0^{infty} frac{sqrt{t}}{cosh^2 (t)} dt\[10pt]
&=int_0^{infty} frac{sqrt{t}}{cosh (2t)+1} dt\[10pt]
&=frac{1}{2 sqrt{2}}int_0^{infty} frac{sqrt{u}}{cosh (u)+1} du
end{align}
We could use geometric series since $cosh (u) geq 1$, but I don't know how it will help.
calculus integration definite-integrals improper-integrals riemann-zeta
calculus integration definite-integrals improper-integrals riemann-zeta
edited Jun 10 '16 at 5:28
Sophie Agnesi
1,764324
1,764324
asked Jun 9 '16 at 21:57
Yuriy SYuriy S
15.9k433118
15.9k433118
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03
add a comment |
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$$I=frac{1}{2sqrt{2}}int_{0}^{+infty}frac{sqrt{u},du}{1+cosh(u)}=frac{1}{sqrt{2}}int_{1}^{+infty}frac{sqrt{log v}}{(v+1)^2},dv=frac{1}{sqrt{2}}int_{0}^{1}frac{sqrt{-log v}}{(1+v)^2},dv tag{1}$$
but since
$$ int_{0}^{1}v^k sqrt{-log v},dv = frac{sqrt{pi}}{2(1+k)^{3/2}} tag{2}$$
by expanding $frac{1}{(1+v)^2}$ as a Taylor series we get:
$$ I = frac{1}{sqrt{2}}sum_{ngeq 0}(-1)^n (n+1)frac{sqrt{pi}}{2(1+n)^{3/2}} = color{red}{frac{sqrt{pi}}{2sqrt{2}}cdotetaleft(frac{1}{2}right)}tag{3}$$
and the claim follows from the well-known:
$$ eta(s) = (1-2^{1-s}),zeta(s)tag{4} $$
that gives an analytic continuation for the $zeta$ function.
$endgroup$
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
add a comment |
$begingroup$
Hint:
Consider the parametric integral
begin{equation}
I(a) = int_0^infty frac{t^{a-1}}{cosh^{2} t} dt=4 int_{0}^{infty} frac{t^{a-1}}{(e^{t}+e^{-t})^{2}} dt = 4 int_{0}^{infty}frac{t^{a-1} e^{-2t}}{(1+e^{-2t})^{2}} dt
end{equation}
Hence, your integral is simply
begin{equation}
int_0^{infty} frac{x^2}{cosh^2x^2} dx = -2 frac{partial}{partial b}left[int_0^{ infty}frac{t^{a-1}}{1+e^{bt}} dtright]_{a=frac{1}{2} , b=2}
end{equation}
I believe you can evaluate the last expression by your own.
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{, #2 ,},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x},,
stackrel{x to x^{1/2}}{=},,,
2int_{0}^{infty}{x^{1/2}expo{2x} over pars{expo{2x} + 1}^{2}},dd x
\[5mm] = &
-int_{x = 0}^{x to infty}x^{1/2},ddpars{{1 over expo{2x} + 1}} =
halfint_{0}^{infty}{x^{-1/2}expo{-2x} over 1 + expo{-2x}},dd x
\[5mm] stackrel{2x to x}{=},,,&
{root{2} over 4}int_{0}^{infty}{x^{-1/2}expo{-x} over 1 + expo{-x}},dd x
\[5mm] = &
{root{2} over 4}sum_{n = 0}^{infty}pars{-1}^{n}
int_{0}^{infty}x^{-1/2}expo{-pars{n + 1}x},dd x
\[3mm] stackrel{pars{n + 1}x to x}{=},,,&
{root{2} over 4}sum_{n = 0}^{infty}
{pars{-1}^{n} over pars{n + 1}^{1/2}} overbrace{%
int_{0}^{infty}x^{-1/2}expo{-x},dd x}^{ds{Gammapars{half} = root{pi}}}
\[5mm] = &
{root{2} over 4},root{pi}sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{1/2}}
end{align}
With the identity
$ds{sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{s}} =
pars{1 - 2^{1 - s}}zetapars{s}}$:
begin{align}
bbox[#ffd,10px]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x} & =
{root{2} over 4},root{pi}pars{1 - 2^{1 - 1/2}}zetapars{half}
\[5mm] & =
bbox[10px,border:1px groove navy]{{root{2} - 2 over 4},root{pi}zetapars{half}} approx 0.3791
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1820280%2fprove-int-0-infty-fracx2-cosh2-x2-dx-frac-sqrt2-24-sqrt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$I=frac{1}{2sqrt{2}}int_{0}^{+infty}frac{sqrt{u},du}{1+cosh(u)}=frac{1}{sqrt{2}}int_{1}^{+infty}frac{sqrt{log v}}{(v+1)^2},dv=frac{1}{sqrt{2}}int_{0}^{1}frac{sqrt{-log v}}{(1+v)^2},dv tag{1}$$
but since
$$ int_{0}^{1}v^k sqrt{-log v},dv = frac{sqrt{pi}}{2(1+k)^{3/2}} tag{2}$$
by expanding $frac{1}{(1+v)^2}$ as a Taylor series we get:
$$ I = frac{1}{sqrt{2}}sum_{ngeq 0}(-1)^n (n+1)frac{sqrt{pi}}{2(1+n)^{3/2}} = color{red}{frac{sqrt{pi}}{2sqrt{2}}cdotetaleft(frac{1}{2}right)}tag{3}$$
and the claim follows from the well-known:
$$ eta(s) = (1-2^{1-s}),zeta(s)tag{4} $$
that gives an analytic continuation for the $zeta$ function.
$endgroup$
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
add a comment |
$begingroup$
$$I=frac{1}{2sqrt{2}}int_{0}^{+infty}frac{sqrt{u},du}{1+cosh(u)}=frac{1}{sqrt{2}}int_{1}^{+infty}frac{sqrt{log v}}{(v+1)^2},dv=frac{1}{sqrt{2}}int_{0}^{1}frac{sqrt{-log v}}{(1+v)^2},dv tag{1}$$
but since
$$ int_{0}^{1}v^k sqrt{-log v},dv = frac{sqrt{pi}}{2(1+k)^{3/2}} tag{2}$$
by expanding $frac{1}{(1+v)^2}$ as a Taylor series we get:
$$ I = frac{1}{sqrt{2}}sum_{ngeq 0}(-1)^n (n+1)frac{sqrt{pi}}{2(1+n)^{3/2}} = color{red}{frac{sqrt{pi}}{2sqrt{2}}cdotetaleft(frac{1}{2}right)}tag{3}$$
and the claim follows from the well-known:
$$ eta(s) = (1-2^{1-s}),zeta(s)tag{4} $$
that gives an analytic continuation for the $zeta$ function.
$endgroup$
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
add a comment |
$begingroup$
$$I=frac{1}{2sqrt{2}}int_{0}^{+infty}frac{sqrt{u},du}{1+cosh(u)}=frac{1}{sqrt{2}}int_{1}^{+infty}frac{sqrt{log v}}{(v+1)^2},dv=frac{1}{sqrt{2}}int_{0}^{1}frac{sqrt{-log v}}{(1+v)^2},dv tag{1}$$
but since
$$ int_{0}^{1}v^k sqrt{-log v},dv = frac{sqrt{pi}}{2(1+k)^{3/2}} tag{2}$$
by expanding $frac{1}{(1+v)^2}$ as a Taylor series we get:
$$ I = frac{1}{sqrt{2}}sum_{ngeq 0}(-1)^n (n+1)frac{sqrt{pi}}{2(1+n)^{3/2}} = color{red}{frac{sqrt{pi}}{2sqrt{2}}cdotetaleft(frac{1}{2}right)}tag{3}$$
and the claim follows from the well-known:
$$ eta(s) = (1-2^{1-s}),zeta(s)tag{4} $$
that gives an analytic continuation for the $zeta$ function.
$endgroup$
$$I=frac{1}{2sqrt{2}}int_{0}^{+infty}frac{sqrt{u},du}{1+cosh(u)}=frac{1}{sqrt{2}}int_{1}^{+infty}frac{sqrt{log v}}{(v+1)^2},dv=frac{1}{sqrt{2}}int_{0}^{1}frac{sqrt{-log v}}{(1+v)^2},dv tag{1}$$
but since
$$ int_{0}^{1}v^k sqrt{-log v},dv = frac{sqrt{pi}}{2(1+k)^{3/2}} tag{2}$$
by expanding $frac{1}{(1+v)^2}$ as a Taylor series we get:
$$ I = frac{1}{sqrt{2}}sum_{ngeq 0}(-1)^n (n+1)frac{sqrt{pi}}{2(1+n)^{3/2}} = color{red}{frac{sqrt{pi}}{2sqrt{2}}cdotetaleft(frac{1}{2}right)}tag{3}$$
and the claim follows from the well-known:
$$ eta(s) = (1-2^{1-s}),zeta(s)tag{4} $$
that gives an analytic continuation for the $zeta$ function.
answered Jun 9 '16 at 22:18
Jack D'AurizioJack D'Aurizio
291k33284668
291k33284668
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
add a comment |
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
Can you help me understand what substitution you made to get$$frac 1{2sqrt2}intlimits_0^{infty}du,frac {sqrt u}{cosh u+1}=frac 1{sqrt2}intlimits_1^{infty}dv,frac {sqrt{log v}}{(v+1)^2}$$?
$endgroup$
– Frank W.
Jun 26 '18 at 23:26
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
$begingroup$
@FrankW.: $u=log v$.
$endgroup$
– Jack D'Aurizio
Jun 27 '18 at 12:18
add a comment |
$begingroup$
Hint:
Consider the parametric integral
begin{equation}
I(a) = int_0^infty frac{t^{a-1}}{cosh^{2} t} dt=4 int_{0}^{infty} frac{t^{a-1}}{(e^{t}+e^{-t})^{2}} dt = 4 int_{0}^{infty}frac{t^{a-1} e^{-2t}}{(1+e^{-2t})^{2}} dt
end{equation}
Hence, your integral is simply
begin{equation}
int_0^{infty} frac{x^2}{cosh^2x^2} dx = -2 frac{partial}{partial b}left[int_0^{ infty}frac{t^{a-1}}{1+e^{bt}} dtright]_{a=frac{1}{2} , b=2}
end{equation}
I believe you can evaluate the last expression by your own.
$endgroup$
add a comment |
$begingroup$
Hint:
Consider the parametric integral
begin{equation}
I(a) = int_0^infty frac{t^{a-1}}{cosh^{2} t} dt=4 int_{0}^{infty} frac{t^{a-1}}{(e^{t}+e^{-t})^{2}} dt = 4 int_{0}^{infty}frac{t^{a-1} e^{-2t}}{(1+e^{-2t})^{2}} dt
end{equation}
Hence, your integral is simply
begin{equation}
int_0^{infty} frac{x^2}{cosh^2x^2} dx = -2 frac{partial}{partial b}left[int_0^{ infty}frac{t^{a-1}}{1+e^{bt}} dtright]_{a=frac{1}{2} , b=2}
end{equation}
I believe you can evaluate the last expression by your own.
$endgroup$
add a comment |
$begingroup$
Hint:
Consider the parametric integral
begin{equation}
I(a) = int_0^infty frac{t^{a-1}}{cosh^{2} t} dt=4 int_{0}^{infty} frac{t^{a-1}}{(e^{t}+e^{-t})^{2}} dt = 4 int_{0}^{infty}frac{t^{a-1} e^{-2t}}{(1+e^{-2t})^{2}} dt
end{equation}
Hence, your integral is simply
begin{equation}
int_0^{infty} frac{x^2}{cosh^2x^2} dx = -2 frac{partial}{partial b}left[int_0^{ infty}frac{t^{a-1}}{1+e^{bt}} dtright]_{a=frac{1}{2} , b=2}
end{equation}
I believe you can evaluate the last expression by your own.
$endgroup$
Hint:
Consider the parametric integral
begin{equation}
I(a) = int_0^infty frac{t^{a-1}}{cosh^{2} t} dt=4 int_{0}^{infty} frac{t^{a-1}}{(e^{t}+e^{-t})^{2}} dt = 4 int_{0}^{infty}frac{t^{a-1} e^{-2t}}{(1+e^{-2t})^{2}} dt
end{equation}
Hence, your integral is simply
begin{equation}
int_0^{infty} frac{x^2}{cosh^2x^2} dx = -2 frac{partial}{partial b}left[int_0^{ infty}frac{t^{a-1}}{1+e^{bt}} dtright]_{a=frac{1}{2} , b=2}
end{equation}
I believe you can evaluate the last expression by your own.
edited Jun 10 '16 at 5:14
answered Jun 10 '16 at 5:06
Sophie AgnesiSophie Agnesi
1,764324
1,764324
add a comment |
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{, #2 ,},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x},,
stackrel{x to x^{1/2}}{=},,,
2int_{0}^{infty}{x^{1/2}expo{2x} over pars{expo{2x} + 1}^{2}},dd x
\[5mm] = &
-int_{x = 0}^{x to infty}x^{1/2},ddpars{{1 over expo{2x} + 1}} =
halfint_{0}^{infty}{x^{-1/2}expo{-2x} over 1 + expo{-2x}},dd x
\[5mm] stackrel{2x to x}{=},,,&
{root{2} over 4}int_{0}^{infty}{x^{-1/2}expo{-x} over 1 + expo{-x}},dd x
\[5mm] = &
{root{2} over 4}sum_{n = 0}^{infty}pars{-1}^{n}
int_{0}^{infty}x^{-1/2}expo{-pars{n + 1}x},dd x
\[3mm] stackrel{pars{n + 1}x to x}{=},,,&
{root{2} over 4}sum_{n = 0}^{infty}
{pars{-1}^{n} over pars{n + 1}^{1/2}} overbrace{%
int_{0}^{infty}x^{-1/2}expo{-x},dd x}^{ds{Gammapars{half} = root{pi}}}
\[5mm] = &
{root{2} over 4},root{pi}sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{1/2}}
end{align}
With the identity
$ds{sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{s}} =
pars{1 - 2^{1 - s}}zetapars{s}}$:
begin{align}
bbox[#ffd,10px]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x} & =
{root{2} over 4},root{pi}pars{1 - 2^{1 - 1/2}}zetapars{half}
\[5mm] & =
bbox[10px,border:1px groove navy]{{root{2} - 2 over 4},root{pi}zetapars{half}} approx 0.3791
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{, #2 ,},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x},,
stackrel{x to x^{1/2}}{=},,,
2int_{0}^{infty}{x^{1/2}expo{2x} over pars{expo{2x} + 1}^{2}},dd x
\[5mm] = &
-int_{x = 0}^{x to infty}x^{1/2},ddpars{{1 over expo{2x} + 1}} =
halfint_{0}^{infty}{x^{-1/2}expo{-2x} over 1 + expo{-2x}},dd x
\[5mm] stackrel{2x to x}{=},,,&
{root{2} over 4}int_{0}^{infty}{x^{-1/2}expo{-x} over 1 + expo{-x}},dd x
\[5mm] = &
{root{2} over 4}sum_{n = 0}^{infty}pars{-1}^{n}
int_{0}^{infty}x^{-1/2}expo{-pars{n + 1}x},dd x
\[3mm] stackrel{pars{n + 1}x to x}{=},,,&
{root{2} over 4}sum_{n = 0}^{infty}
{pars{-1}^{n} over pars{n + 1}^{1/2}} overbrace{%
int_{0}^{infty}x^{-1/2}expo{-x},dd x}^{ds{Gammapars{half} = root{pi}}}
\[5mm] = &
{root{2} over 4},root{pi}sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{1/2}}
end{align}
With the identity
$ds{sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{s}} =
pars{1 - 2^{1 - s}}zetapars{s}}$:
begin{align}
bbox[#ffd,10px]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x} & =
{root{2} over 4},root{pi}pars{1 - 2^{1 - 1/2}}zetapars{half}
\[5mm] & =
bbox[10px,border:1px groove navy]{{root{2} - 2 over 4},root{pi}zetapars{half}} approx 0.3791
end{align}
$endgroup$
add a comment |
$begingroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{, #2 ,},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x},,
stackrel{x to x^{1/2}}{=},,,
2int_{0}^{infty}{x^{1/2}expo{2x} over pars{expo{2x} + 1}^{2}},dd x
\[5mm] = &
-int_{x = 0}^{x to infty}x^{1/2},ddpars{{1 over expo{2x} + 1}} =
halfint_{0}^{infty}{x^{-1/2}expo{-2x} over 1 + expo{-2x}},dd x
\[5mm] stackrel{2x to x}{=},,,&
{root{2} over 4}int_{0}^{infty}{x^{-1/2}expo{-x} over 1 + expo{-x}},dd x
\[5mm] = &
{root{2} over 4}sum_{n = 0}^{infty}pars{-1}^{n}
int_{0}^{infty}x^{-1/2}expo{-pars{n + 1}x},dd x
\[3mm] stackrel{pars{n + 1}x to x}{=},,,&
{root{2} over 4}sum_{n = 0}^{infty}
{pars{-1}^{n} over pars{n + 1}^{1/2}} overbrace{%
int_{0}^{infty}x^{-1/2}expo{-x},dd x}^{ds{Gammapars{half} = root{pi}}}
\[5mm] = &
{root{2} over 4},root{pi}sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{1/2}}
end{align}
With the identity
$ds{sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{s}} =
pars{1 - 2^{1 - s}}zetapars{s}}$:
begin{align}
bbox[#ffd,10px]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x} & =
{root{2} over 4},root{pi}pars{1 - 2^{1 - 1/2}}zetapars{half}
\[5mm] & =
bbox[10px,border:1px groove navy]{{root{2} - 2 over 4},root{pi}zetapars{half}} approx 0.3791
end{align}
$endgroup$
$newcommand{angles}[1]{leftlangle, #1 ,rightrangle}
newcommand{braces}[1]{leftlbrace, #1 ,rightrbrace}
newcommand{bracks}[1]{leftlbrack, #1 ,rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{half}{{1 over 2}}
newcommand{ic}{mathrm{i}}
newcommand{iff}{Leftrightarrow}
newcommand{imp}{Longrightarrow}
newcommand{ol}[1]{overline{#1}}
newcommand{pars}[1]{left(, #1 ,right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{, #2 ,},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert, #1 ,rightvert}$
begin{align}
&bbox[10px,#ffd]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x},,
stackrel{x to x^{1/2}}{=},,,
2int_{0}^{infty}{x^{1/2}expo{2x} over pars{expo{2x} + 1}^{2}},dd x
\[5mm] = &
-int_{x = 0}^{x to infty}x^{1/2},ddpars{{1 over expo{2x} + 1}} =
halfint_{0}^{infty}{x^{-1/2}expo{-2x} over 1 + expo{-2x}},dd x
\[5mm] stackrel{2x to x}{=},,,&
{root{2} over 4}int_{0}^{infty}{x^{-1/2}expo{-x} over 1 + expo{-x}},dd x
\[5mm] = &
{root{2} over 4}sum_{n = 0}^{infty}pars{-1}^{n}
int_{0}^{infty}x^{-1/2}expo{-pars{n + 1}x},dd x
\[3mm] stackrel{pars{n + 1}x to x}{=},,,&
{root{2} over 4}sum_{n = 0}^{infty}
{pars{-1}^{n} over pars{n + 1}^{1/2}} overbrace{%
int_{0}^{infty}x^{-1/2}expo{-x},dd x}^{ds{Gammapars{half} = root{pi}}}
\[5mm] = &
{root{2} over 4},root{pi}sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{1/2}}
end{align}
With the identity
$ds{sum_{n = 1}^{infty}{pars{-1}^{n + 1} over n^{s}} =
pars{1 - 2^{1 - s}}zetapars{s}}$:
begin{align}
bbox[#ffd,10px]{int_{0}^{infty}{x^{2} over cosh^{2}pars{x^{2}}},dd x} & =
{root{2} over 4},root{pi}pars{1 - 2^{1 - 1/2}}zetapars{half}
\[5mm] & =
bbox[10px,border:1px groove navy]{{root{2} - 2 over 4},root{pi}zetapars{half}} approx 0.3791
end{align}
edited Dec 9 '18 at 0:38
answered Jun 10 '16 at 4:13
Felix MarinFelix Marin
68.6k7109145
68.6k7109145
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1820280%2fprove-int-0-infty-fracx2-cosh2-x2-dx-frac-sqrt2-24-sqrt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Maybe $Gamma (s) zeta (s)=int_0^{infty}frac{u^{s-1}}{e^u-1}du$ helps.
$endgroup$
– MrYouMath
Jun 9 '16 at 22:01
$begingroup$
It probably does, forgot about this, thank you
$endgroup$
– Yuriy S
Jun 9 '16 at 22:03