Norm constrained least square minimization with an additional single linear equality constraint: A...












1












$begingroup$


Given is the following QCQP problem:
begin{align}
&&min_{mathbf{x} in mathbb{C}^n} &|A mathbf{x} - mathbf{b}|^2,tag{1}label{1}\
text{ subject to:}&&&\
&&|mathbf{x}|^2 &leq alpha^2,tag{C1}label{C1}\
&&mathbf{c}^{dagger} mathbf{x} &= gamma,tag{C2}label{C2}
end{align}

with:





  • $A in mathbb{C}^{mtimes n}$, with $m, n in mathbb{N}: m geq n$: $ A^{dagger} A$ positive definite,


  • $mathbf{b} in mathbb{C}^m,mathbf{c} in mathbb{C}^n: 0< |mathbf{c}| < infty$,


  • $gamma in mathbb{C}: |gamma| < infty,, alpha in mathbb{R}: |gamma|^2/|mathbf{c}|^2 leq alpha^2 < infty$,


  • $|.|$ - $2$-norm,


  • ${}^dagger$ - Hermitian adjoint, the combined operation of complex conjugation and transposition.


Obviously, there exists no solution for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.
For the solution of the only norm constraint problem, i.e. without the constraint eqref{C2}, see here and here.



With the definitions $f(mathbf{x}):=|A mathbf{x} - mathbf{b}|^2$, $h(mathbf{x}):=mathbf{c}^{dagger}mathbf{x} - gamma$ and $g(mathbf{x}):=|mathbf{x}|^2 - alpha^2$, we can write the problem in the standard form:
begin{align}
&&min_{mathbf{x} in mathbb{C}^n} &f(mathbf{x}),tag{1}label{1a}\
text{ subject to:}&&&\
&&g(mathbf{x}) &leq 0,tag{C1}label{C2a}\
&&h(mathbf{x})& = 0.tag{C2}label{C1a}
end{align}



The Lagrangian is given by
$$L(mathbf{x},mu, lambda) = f(mathbf{x}) + mu g(mathbf{x}) + lambda h(mathbf{x}),tag{2}label{2}$$
with $(mu, lambda)$ KKT-multipliers.
In the following we abbreviate $mathbf{y}:=A^{dagger}mathbf{b}$ and denote with $I$ the $ntimes n $ identity and with $mathbf{0}$ a length $n$ column vector with all zero entries.

Solving the linear matrix equation
$$
begin{pmatrix}
A^{dagger}A + mu I & mathbf{c}\
mathbf{c}^{dagger} & 0
end{pmatrix}
begin{pmatrix}
mathbf{x}(mu)\
lambda(mu)
end{pmatrix}
=
begin{pmatrix}
mathbf{y}\
gamma
end{pmatrix},tag{3}label{3}
$$

we obtain the $mu$-parametric solution
$$
mathbf{x}(mu) =
begin{pmatrix}
I &mathbf{0}
end{pmatrix}
begin{pmatrix}
A^{dagger}A + mu I & mathbf{c}\
mathbf{c}^{dagger} & 0
end{pmatrix}^{-1}
begin{pmatrix}
mathbf{y}\
gamma
end{pmatrix}.tag{4}label{4}
$$

Using the formula for block matrix inversion,
$$
begin{pmatrix}
G & mathbf{v}\
mathbf{v}^{dagger} &0
end{pmatrix}^{-1}
=
begin{pmatrix}
G^{-1} - frac{G^{-1}mathbf{v}mathbf{v}^{dagger}G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & frac{G^{-1}mathbf{v}}{mathbf{v}^{dagger}G^{-1}mathbf{v}}\
frac{mathbf{v}^{dagger} G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & -frac{1}{mathbf{v}^{dagger}G^{-1}mathbf{v}}
end{pmatrix},tag{5}label{5}
$$

an explicit expression for the $mu$-parametric solution can be written as
$$
mathbf{x}(mu) = (A^{dagger}A + mu I)^{-1}left(mathbf{y} - w(mu)mathbf{c}right),tag{6}label{6}
$$

where
$$
w(mu):=frac{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1} mathbf{y} - gamma}{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1}mathbf{c}}.tag{7}label{7}
$$

The solution of eqref{6} fulfills eqref{C2}. The remaining task is to find $mu^*$:
$$
f(mathbf{x}(mu^*)) = min_{mu:, g(mathbf{x}(mu)) leq 0} f(mathbf{x}(mu)).tag{8}label{8}
$$



Questions



(Q1) Is $|mathbf{x}(mu)|^2$ monotonically decreasing with increasing $|mu|$?



(Q2) Is $mu^* geq 0$?



(Q3) Is $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Given is the following QCQP problem:
    begin{align}
    &&min_{mathbf{x} in mathbb{C}^n} &|A mathbf{x} - mathbf{b}|^2,tag{1}label{1}\
    text{ subject to:}&&&\
    &&|mathbf{x}|^2 &leq alpha^2,tag{C1}label{C1}\
    &&mathbf{c}^{dagger} mathbf{x} &= gamma,tag{C2}label{C2}
    end{align}

    with:





    • $A in mathbb{C}^{mtimes n}$, with $m, n in mathbb{N}: m geq n$: $ A^{dagger} A$ positive definite,


    • $mathbf{b} in mathbb{C}^m,mathbf{c} in mathbb{C}^n: 0< |mathbf{c}| < infty$,


    • $gamma in mathbb{C}: |gamma| < infty,, alpha in mathbb{R}: |gamma|^2/|mathbf{c}|^2 leq alpha^2 < infty$,


    • $|.|$ - $2$-norm,


    • ${}^dagger$ - Hermitian adjoint, the combined operation of complex conjugation and transposition.


    Obviously, there exists no solution for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.
    For the solution of the only norm constraint problem, i.e. without the constraint eqref{C2}, see here and here.



    With the definitions $f(mathbf{x}):=|A mathbf{x} - mathbf{b}|^2$, $h(mathbf{x}):=mathbf{c}^{dagger}mathbf{x} - gamma$ and $g(mathbf{x}):=|mathbf{x}|^2 - alpha^2$, we can write the problem in the standard form:
    begin{align}
    &&min_{mathbf{x} in mathbb{C}^n} &f(mathbf{x}),tag{1}label{1a}\
    text{ subject to:}&&&\
    &&g(mathbf{x}) &leq 0,tag{C1}label{C2a}\
    &&h(mathbf{x})& = 0.tag{C2}label{C1a}
    end{align}



    The Lagrangian is given by
    $$L(mathbf{x},mu, lambda) = f(mathbf{x}) + mu g(mathbf{x}) + lambda h(mathbf{x}),tag{2}label{2}$$
    with $(mu, lambda)$ KKT-multipliers.
    In the following we abbreviate $mathbf{y}:=A^{dagger}mathbf{b}$ and denote with $I$ the $ntimes n $ identity and with $mathbf{0}$ a length $n$ column vector with all zero entries.

    Solving the linear matrix equation
    $$
    begin{pmatrix}
    A^{dagger}A + mu I & mathbf{c}\
    mathbf{c}^{dagger} & 0
    end{pmatrix}
    begin{pmatrix}
    mathbf{x}(mu)\
    lambda(mu)
    end{pmatrix}
    =
    begin{pmatrix}
    mathbf{y}\
    gamma
    end{pmatrix},tag{3}label{3}
    $$

    we obtain the $mu$-parametric solution
    $$
    mathbf{x}(mu) =
    begin{pmatrix}
    I &mathbf{0}
    end{pmatrix}
    begin{pmatrix}
    A^{dagger}A + mu I & mathbf{c}\
    mathbf{c}^{dagger} & 0
    end{pmatrix}^{-1}
    begin{pmatrix}
    mathbf{y}\
    gamma
    end{pmatrix}.tag{4}label{4}
    $$

    Using the formula for block matrix inversion,
    $$
    begin{pmatrix}
    G & mathbf{v}\
    mathbf{v}^{dagger} &0
    end{pmatrix}^{-1}
    =
    begin{pmatrix}
    G^{-1} - frac{G^{-1}mathbf{v}mathbf{v}^{dagger}G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & frac{G^{-1}mathbf{v}}{mathbf{v}^{dagger}G^{-1}mathbf{v}}\
    frac{mathbf{v}^{dagger} G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & -frac{1}{mathbf{v}^{dagger}G^{-1}mathbf{v}}
    end{pmatrix},tag{5}label{5}
    $$

    an explicit expression for the $mu$-parametric solution can be written as
    $$
    mathbf{x}(mu) = (A^{dagger}A + mu I)^{-1}left(mathbf{y} - w(mu)mathbf{c}right),tag{6}label{6}
    $$

    where
    $$
    w(mu):=frac{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1} mathbf{y} - gamma}{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1}mathbf{c}}.tag{7}label{7}
    $$

    The solution of eqref{6} fulfills eqref{C2}. The remaining task is to find $mu^*$:
    $$
    f(mathbf{x}(mu^*)) = min_{mu:, g(mathbf{x}(mu)) leq 0} f(mathbf{x}(mu)).tag{8}label{8}
    $$



    Questions



    (Q1) Is $|mathbf{x}(mu)|^2$ monotonically decreasing with increasing $|mu|$?



    (Q2) Is $mu^* geq 0$?



    (Q3) Is $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Given is the following QCQP problem:
      begin{align}
      &&min_{mathbf{x} in mathbb{C}^n} &|A mathbf{x} - mathbf{b}|^2,tag{1}label{1}\
      text{ subject to:}&&&\
      &&|mathbf{x}|^2 &leq alpha^2,tag{C1}label{C1}\
      &&mathbf{c}^{dagger} mathbf{x} &= gamma,tag{C2}label{C2}
      end{align}

      with:





      • $A in mathbb{C}^{mtimes n}$, with $m, n in mathbb{N}: m geq n$: $ A^{dagger} A$ positive definite,


      • $mathbf{b} in mathbb{C}^m,mathbf{c} in mathbb{C}^n: 0< |mathbf{c}| < infty$,


      • $gamma in mathbb{C}: |gamma| < infty,, alpha in mathbb{R}: |gamma|^2/|mathbf{c}|^2 leq alpha^2 < infty$,


      • $|.|$ - $2$-norm,


      • ${}^dagger$ - Hermitian adjoint, the combined operation of complex conjugation and transposition.


      Obviously, there exists no solution for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.
      For the solution of the only norm constraint problem, i.e. without the constraint eqref{C2}, see here and here.



      With the definitions $f(mathbf{x}):=|A mathbf{x} - mathbf{b}|^2$, $h(mathbf{x}):=mathbf{c}^{dagger}mathbf{x} - gamma$ and $g(mathbf{x}):=|mathbf{x}|^2 - alpha^2$, we can write the problem in the standard form:
      begin{align}
      &&min_{mathbf{x} in mathbb{C}^n} &f(mathbf{x}),tag{1}label{1a}\
      text{ subject to:}&&&\
      &&g(mathbf{x}) &leq 0,tag{C1}label{C2a}\
      &&h(mathbf{x})& = 0.tag{C2}label{C1a}
      end{align}



      The Lagrangian is given by
      $$L(mathbf{x},mu, lambda) = f(mathbf{x}) + mu g(mathbf{x}) + lambda h(mathbf{x}),tag{2}label{2}$$
      with $(mu, lambda)$ KKT-multipliers.
      In the following we abbreviate $mathbf{y}:=A^{dagger}mathbf{b}$ and denote with $I$ the $ntimes n $ identity and with $mathbf{0}$ a length $n$ column vector with all zero entries.

      Solving the linear matrix equation
      $$
      begin{pmatrix}
      A^{dagger}A + mu I & mathbf{c}\
      mathbf{c}^{dagger} & 0
      end{pmatrix}
      begin{pmatrix}
      mathbf{x}(mu)\
      lambda(mu)
      end{pmatrix}
      =
      begin{pmatrix}
      mathbf{y}\
      gamma
      end{pmatrix},tag{3}label{3}
      $$

      we obtain the $mu$-parametric solution
      $$
      mathbf{x}(mu) =
      begin{pmatrix}
      I &mathbf{0}
      end{pmatrix}
      begin{pmatrix}
      A^{dagger}A + mu I & mathbf{c}\
      mathbf{c}^{dagger} & 0
      end{pmatrix}^{-1}
      begin{pmatrix}
      mathbf{y}\
      gamma
      end{pmatrix}.tag{4}label{4}
      $$

      Using the formula for block matrix inversion,
      $$
      begin{pmatrix}
      G & mathbf{v}\
      mathbf{v}^{dagger} &0
      end{pmatrix}^{-1}
      =
      begin{pmatrix}
      G^{-1} - frac{G^{-1}mathbf{v}mathbf{v}^{dagger}G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & frac{G^{-1}mathbf{v}}{mathbf{v}^{dagger}G^{-1}mathbf{v}}\
      frac{mathbf{v}^{dagger} G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & -frac{1}{mathbf{v}^{dagger}G^{-1}mathbf{v}}
      end{pmatrix},tag{5}label{5}
      $$

      an explicit expression for the $mu$-parametric solution can be written as
      $$
      mathbf{x}(mu) = (A^{dagger}A + mu I)^{-1}left(mathbf{y} - w(mu)mathbf{c}right),tag{6}label{6}
      $$

      where
      $$
      w(mu):=frac{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1} mathbf{y} - gamma}{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1}mathbf{c}}.tag{7}label{7}
      $$

      The solution of eqref{6} fulfills eqref{C2}. The remaining task is to find $mu^*$:
      $$
      f(mathbf{x}(mu^*)) = min_{mu:, g(mathbf{x}(mu)) leq 0} f(mathbf{x}(mu)).tag{8}label{8}
      $$



      Questions



      (Q1) Is $|mathbf{x}(mu)|^2$ monotonically decreasing with increasing $|mu|$?



      (Q2) Is $mu^* geq 0$?



      (Q3) Is $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$?










      share|cite|improve this question











      $endgroup$




      Given is the following QCQP problem:
      begin{align}
      &&min_{mathbf{x} in mathbb{C}^n} &|A mathbf{x} - mathbf{b}|^2,tag{1}label{1}\
      text{ subject to:}&&&\
      &&|mathbf{x}|^2 &leq alpha^2,tag{C1}label{C1}\
      &&mathbf{c}^{dagger} mathbf{x} &= gamma,tag{C2}label{C2}
      end{align}

      with:





      • $A in mathbb{C}^{mtimes n}$, with $m, n in mathbb{N}: m geq n$: $ A^{dagger} A$ positive definite,


      • $mathbf{b} in mathbb{C}^m,mathbf{c} in mathbb{C}^n: 0< |mathbf{c}| < infty$,


      • $gamma in mathbb{C}: |gamma| < infty,, alpha in mathbb{R}: |gamma|^2/|mathbf{c}|^2 leq alpha^2 < infty$,


      • $|.|$ - $2$-norm,


      • ${}^dagger$ - Hermitian adjoint, the combined operation of complex conjugation and transposition.


      Obviously, there exists no solution for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.
      For the solution of the only norm constraint problem, i.e. without the constraint eqref{C2}, see here and here.



      With the definitions $f(mathbf{x}):=|A mathbf{x} - mathbf{b}|^2$, $h(mathbf{x}):=mathbf{c}^{dagger}mathbf{x} - gamma$ and $g(mathbf{x}):=|mathbf{x}|^2 - alpha^2$, we can write the problem in the standard form:
      begin{align}
      &&min_{mathbf{x} in mathbb{C}^n} &f(mathbf{x}),tag{1}label{1a}\
      text{ subject to:}&&&\
      &&g(mathbf{x}) &leq 0,tag{C1}label{C2a}\
      &&h(mathbf{x})& = 0.tag{C2}label{C1a}
      end{align}



      The Lagrangian is given by
      $$L(mathbf{x},mu, lambda) = f(mathbf{x}) + mu g(mathbf{x}) + lambda h(mathbf{x}),tag{2}label{2}$$
      with $(mu, lambda)$ KKT-multipliers.
      In the following we abbreviate $mathbf{y}:=A^{dagger}mathbf{b}$ and denote with $I$ the $ntimes n $ identity and with $mathbf{0}$ a length $n$ column vector with all zero entries.

      Solving the linear matrix equation
      $$
      begin{pmatrix}
      A^{dagger}A + mu I & mathbf{c}\
      mathbf{c}^{dagger} & 0
      end{pmatrix}
      begin{pmatrix}
      mathbf{x}(mu)\
      lambda(mu)
      end{pmatrix}
      =
      begin{pmatrix}
      mathbf{y}\
      gamma
      end{pmatrix},tag{3}label{3}
      $$

      we obtain the $mu$-parametric solution
      $$
      mathbf{x}(mu) =
      begin{pmatrix}
      I &mathbf{0}
      end{pmatrix}
      begin{pmatrix}
      A^{dagger}A + mu I & mathbf{c}\
      mathbf{c}^{dagger} & 0
      end{pmatrix}^{-1}
      begin{pmatrix}
      mathbf{y}\
      gamma
      end{pmatrix}.tag{4}label{4}
      $$

      Using the formula for block matrix inversion,
      $$
      begin{pmatrix}
      G & mathbf{v}\
      mathbf{v}^{dagger} &0
      end{pmatrix}^{-1}
      =
      begin{pmatrix}
      G^{-1} - frac{G^{-1}mathbf{v}mathbf{v}^{dagger}G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & frac{G^{-1}mathbf{v}}{mathbf{v}^{dagger}G^{-1}mathbf{v}}\
      frac{mathbf{v}^{dagger} G^{-1}}{mathbf{v}^{dagger}G^{-1}mathbf{v}} & -frac{1}{mathbf{v}^{dagger}G^{-1}mathbf{v}}
      end{pmatrix},tag{5}label{5}
      $$

      an explicit expression for the $mu$-parametric solution can be written as
      $$
      mathbf{x}(mu) = (A^{dagger}A + mu I)^{-1}left(mathbf{y} - w(mu)mathbf{c}right),tag{6}label{6}
      $$

      where
      $$
      w(mu):=frac{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1} mathbf{y} - gamma}{mathbf{c}^{dagger} (A^{dagger}A + mu I)^{-1}mathbf{c}}.tag{7}label{7}
      $$

      The solution of eqref{6} fulfills eqref{C2}. The remaining task is to find $mu^*$:
      $$
      f(mathbf{x}(mu^*)) = min_{mu:, g(mathbf{x}(mu)) leq 0} f(mathbf{x}(mu)).tag{8}label{8}
      $$



      Questions



      (Q1) Is $|mathbf{x}(mu)|^2$ monotonically decreasing with increasing $|mu|$?



      (Q2) Is $mu^* geq 0$?



      (Q3) Is $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$?







      convex-optimization nonlinear-optimization least-squares constraints qcqp






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 18 '18 at 19:34







      Karsten Leonhardt

















      asked Dec 6 '18 at 17:57









      Karsten LeonhardtKarsten Leonhardt

      365




      365






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Answers



          (Q1)



          $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$ with $lim_{mu to infty}|mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2$. If for a fixed $mu: 0 leq mu < infty$ the solution is
          $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$, then this is the solution for all non-negative values of $mu$.
          For $mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.



          (Q2)



          Yes, see below.



          (Q3)



          Yes and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$, with $mathbf{x}(mu)$ from (6). Although this solution also holds for the case $alpha^2 = |gamma|^2/|mathbf{c}|^2$, where the only allowed solution is the one for $mu to infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.



          Strategy for numerical solution



          For $alpha^2 = |gamma|^2/|mathbf{c}|^2$, no calculation is necessary since the only allowed solution is $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.

          For $alpha^2 > |gamma|^2/|mathbf{c}|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $mathbf{x}(mu)$ according to (6), starting with $mu=0$ and increase $mu$ until (C1) holds.

          No solution exists obviously for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.



          Proofs/Reasons



          (Q1)



          We first investigate the asymptotic solution for large $mu$.
          As a first step we divide the first row of (3) by $mu$:
          $$
          left(A^{dagger} A/mu + Iright) mathbf{x}(mu) + mathbf{c} lambda(mu)/mu = mathbf{y}/mu.tag{A1}label{A1}
          $$

          Multiplying eqref{A1} from the left with $mathbf{c}^{dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
          $$
          lim_{mu to infty}lambda(mu)/mu = -gamma/|mathbf{c}|^2tag{A2}.label{A2}
          $$

          With eqref{A2} in the asymptotic limit of eqref{A1}, we find
          $$
          lim_{mu to infty} mathbf{x}(mu) = gamma mathbf{c} /|mathbf{c}|^2=:mathbf{x}_{infty},tag{A3}label{A3}
          $$

          and thus
          $$
          lim_{mu to infty} |mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2.tag{A4}label{A4}
          $$

          To investigate the monotonicity of $|mathbf{x}(mu)|^2$ we start with differentiating (3) w.r.t. $mu$: The first row yields
          $$
          mathbf{x}(mu) + (A^{dagger}A + mu I) mathbf{x}'(mu) + mathbf{c}lambda'(mu) = 0,tag{A5}label{A5}
          $$
          and the second row the trivial condition $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$. We use for the function derivative w.r.t. $mu$ the abbreviation $u'(mu) equiv rm{d}, u(mu)/rm{d}mu$.
          Multiplying eqref{A5} with $mathbf{c}^{dagger}$ from left we obtain
          $$
          gamma + mathbf{c}^{dagger} A^{dagger}Amathbf{x}'(mu) + |mathbf{c}|^2lambda'(mu) = 0,tag{A6}label{A6}
          $$

          which yields
          $$
          lambda'(mu) = -dfrac{
          gamma + mathbf{c}^{dagger}A^{dagger}A mathbf{x}'(mu)}{|mathbf{c}|^2}.tag{A7}label{A7}
          $$

          Using eqref{A7} in eqref{A5} we get a conditional equation for $mathbf{x}'(mu)$:
          $$
          left(left(I - dfrac{mathbf{c}mathbf{c}^{dagger}}{|mathbf{c}|^2}right)A^{dagger}A + mu Iright) mathbf{x}'(mu) = frac{gamma mathbf{c}}{|mathbf{c}|^2} - mathbf{x}(mu).tag{A8}label{A8}
          $$

          On the left hand side the orthogonal projector $P:=I - mathbf{c}mathbf{c}^{dagger}/|mathbf{c}|^2$ appears that maps elements of $mathbb{C}^n$ to $mathcal{U} = {mathbf{x} in mathbb{C}^n mid mathbf{c}^{dagger}mathbf{x} = 0}subset mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $mathbf{c}$. Multiplying eqref{A8} with $P$ from left we get:
          $$
          left(PA^{dagger}A + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu).tag{A9}label{A9}
          $$

          Since $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$, which is equivalent to $Pmathbf{x}'(mu) = mathbf{x}'(mu)$, we can further write
          $$
          left(PA^{dagger}AP + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu),tag{A10}label{A10}
          $$

          which is a linear equation on $mathcal{U}$ only that completely determines $mathbf{x}'(mu)$. We expand eqref{A10} in an orthonormal basis of $mathcal{U}$ and use the following notation: $mathbf{x}_{mathcal{U}}(mu)$, $mathbf{x}'_{mathcal{U}}(mu)$ for the representation of $Pmathbf{x}(mu)$, $mathbf{x}'(mu)$ in $mathcal{U}$, $I_{mathcal{U}}$ for the identity in $mathcal{U}$ and $S_{mathcal{U}}$ for the representation of $PA^{dagger}AP$ in $mathcal{U}$.
          We can write
          $$
          mathbf{x}'_{mathcal{U}} = -left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu),tag{A11}label{A11}
          $$
          and it follows
          begin{align}
          frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 & = mathbf{x}'(mu)^{dagger}mathbf{x}(mu) + mathbf{x}(mu)^{dagger}mathbf{x}'(mu)tag{A12}label{A12}\
          &=mathbf{x}'(mu)^{dagger}P P mathbf{x}(mu) + mathbf{x}(mu)^{dagger}PPmathbf{x}'(mu)\
          &=mathbf{x}_{mathcal{U}}'(mu)^{dagger}mathbf{x}_{mathcal{U}}(mu) + mathbf{x}_{mathcal{U}}(mu)^{dagger}mathbf{x}_{mathcal{U}}'(mu)\
          &=-2mathbf{x}_{mathcal{U}}(mu)^{dagger}left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu).tag{A13}label{A13}
          end{align}

          It can be readily seen from its definition that $S_{mathcal{U}}$ is positive definite, hence $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is positive definite for $mu geq 0$. Since $A^{dagger}A$ is also positive definite we obtain from (6) together with (7) that $mathbf{x}(mu)$ is not diverging for $mugeq 0$. Therefore, from eqref{A13} we obtain $frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 leq 0$ for $mu geq 0$, that is $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$. However, the monotonicity is not strict because $rm{d}|mathbf{x}(mu)|^2/rm{d}mu$ vanishes when $mathbf{x}_{mathcal{U}}(mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $mathbf{x}_{mathcal{U}}(mu) = 0$ is $mathbf{x}(mu) = gammamathbf{c}/|mathbf{c}|^2 = mathbf{x}_{infty}$. Since this is also the asymptotic solution from eqref{A3}, we have $lim_{mu to infty} rm{d}|mathbf{x}(mu)|^2/rm{d}mu = 0$. Moreover, if (6) yields $mathbf{x}_{infty}$ for $mu < infty$, it must be the solution for all $mu$.



          For $mu < 0$, $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $mu$ matches eigenvalues of $A^{dagger}A$ or $S_{mathcal{U}}$.



          (Q2)



          We have to distinguish two cases:




          • $alpha^2 > |gamma|^2/|mathbf{c}|^2$:

            With the monotonicity of $|mathbf{x}(mu)|^2$ for $mu geq 0$ and eqref{A4}, we find a $mu^star: g(mathbf{x}(mu^star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(mathbf{x}^*,mu^*, lambda^*)$, where $mathbf{x}^*$ is a local optimum for the optimization problem and $(mu^*,lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
            begin{align}
            g(mathbf{x}^*) &leq 0,tag{A14}label{A14}\
            h(mathbf{x}^*) &= 0,tag{A15}label{A15}\
            mu^* &geq 0,tag{A16}label{A16}\
            mu^*g(mathbf{x}^*) &= 0.tag{A17}label{A17}
            end{align}

            eqref{A16} answers the question for this case.


          • $alpha^2 = |gamma|^2/|mathbf{c}|^2$:
            Slater's condition does not hold, however, the only allowed solution is $mathbf{x} = mathbf{x}_{infty}$, the asymptotic solution. Therefore, we have $mu^* to infty$.



          For both cases we get $mu^*
          geq 0$
          .



          (Q3)



          For $mathbf{x}(mu)$ from (6), eqref{A15} holds. The remaining task is to find the optimal $mu^* geq 0$ such that the remaining KKT-conditions hold. To satisfy eqref{A17},
          we require $mu^* = 0$ if $g(mathbf{x}(mu^*=0)) < 0$ and $mu^* >0$ otherwise. For the latter case we require $|mathbf{x}(mu^*)|^2 = alpha^2$ such that (A14) holds. Due to the fact that $|mathbf{x}(mu)|^2$ is monotonically decreasing for $mu geq 0$, we find $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$ and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028827%2fnorm-constrained-least-square-minimization-with-an-additional-single-linear-equa%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Answers



            (Q1)



            $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$ with $lim_{mu to infty}|mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2$. If for a fixed $mu: 0 leq mu < infty$ the solution is
            $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$, then this is the solution for all non-negative values of $mu$.
            For $mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.



            (Q2)



            Yes, see below.



            (Q3)



            Yes and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$, with $mathbf{x}(mu)$ from (6). Although this solution also holds for the case $alpha^2 = |gamma|^2/|mathbf{c}|^2$, where the only allowed solution is the one for $mu to infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.



            Strategy for numerical solution



            For $alpha^2 = |gamma|^2/|mathbf{c}|^2$, no calculation is necessary since the only allowed solution is $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.

            For $alpha^2 > |gamma|^2/|mathbf{c}|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $mathbf{x}(mu)$ according to (6), starting with $mu=0$ and increase $mu$ until (C1) holds.

            No solution exists obviously for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.



            Proofs/Reasons



            (Q1)



            We first investigate the asymptotic solution for large $mu$.
            As a first step we divide the first row of (3) by $mu$:
            $$
            left(A^{dagger} A/mu + Iright) mathbf{x}(mu) + mathbf{c} lambda(mu)/mu = mathbf{y}/mu.tag{A1}label{A1}
            $$

            Multiplying eqref{A1} from the left with $mathbf{c}^{dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
            $$
            lim_{mu to infty}lambda(mu)/mu = -gamma/|mathbf{c}|^2tag{A2}.label{A2}
            $$

            With eqref{A2} in the asymptotic limit of eqref{A1}, we find
            $$
            lim_{mu to infty} mathbf{x}(mu) = gamma mathbf{c} /|mathbf{c}|^2=:mathbf{x}_{infty},tag{A3}label{A3}
            $$

            and thus
            $$
            lim_{mu to infty} |mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2.tag{A4}label{A4}
            $$

            To investigate the monotonicity of $|mathbf{x}(mu)|^2$ we start with differentiating (3) w.r.t. $mu$: The first row yields
            $$
            mathbf{x}(mu) + (A^{dagger}A + mu I) mathbf{x}'(mu) + mathbf{c}lambda'(mu) = 0,tag{A5}label{A5}
            $$
            and the second row the trivial condition $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$. We use for the function derivative w.r.t. $mu$ the abbreviation $u'(mu) equiv rm{d}, u(mu)/rm{d}mu$.
            Multiplying eqref{A5} with $mathbf{c}^{dagger}$ from left we obtain
            $$
            gamma + mathbf{c}^{dagger} A^{dagger}Amathbf{x}'(mu) + |mathbf{c}|^2lambda'(mu) = 0,tag{A6}label{A6}
            $$

            which yields
            $$
            lambda'(mu) = -dfrac{
            gamma + mathbf{c}^{dagger}A^{dagger}A mathbf{x}'(mu)}{|mathbf{c}|^2}.tag{A7}label{A7}
            $$

            Using eqref{A7} in eqref{A5} we get a conditional equation for $mathbf{x}'(mu)$:
            $$
            left(left(I - dfrac{mathbf{c}mathbf{c}^{dagger}}{|mathbf{c}|^2}right)A^{dagger}A + mu Iright) mathbf{x}'(mu) = frac{gamma mathbf{c}}{|mathbf{c}|^2} - mathbf{x}(mu).tag{A8}label{A8}
            $$

            On the left hand side the orthogonal projector $P:=I - mathbf{c}mathbf{c}^{dagger}/|mathbf{c}|^2$ appears that maps elements of $mathbb{C}^n$ to $mathcal{U} = {mathbf{x} in mathbb{C}^n mid mathbf{c}^{dagger}mathbf{x} = 0}subset mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $mathbf{c}$. Multiplying eqref{A8} with $P$ from left we get:
            $$
            left(PA^{dagger}A + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu).tag{A9}label{A9}
            $$

            Since $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$, which is equivalent to $Pmathbf{x}'(mu) = mathbf{x}'(mu)$, we can further write
            $$
            left(PA^{dagger}AP + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu),tag{A10}label{A10}
            $$

            which is a linear equation on $mathcal{U}$ only that completely determines $mathbf{x}'(mu)$. We expand eqref{A10} in an orthonormal basis of $mathcal{U}$ and use the following notation: $mathbf{x}_{mathcal{U}}(mu)$, $mathbf{x}'_{mathcal{U}}(mu)$ for the representation of $Pmathbf{x}(mu)$, $mathbf{x}'(mu)$ in $mathcal{U}$, $I_{mathcal{U}}$ for the identity in $mathcal{U}$ and $S_{mathcal{U}}$ for the representation of $PA^{dagger}AP$ in $mathcal{U}$.
            We can write
            $$
            mathbf{x}'_{mathcal{U}} = -left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu),tag{A11}label{A11}
            $$
            and it follows
            begin{align}
            frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 & = mathbf{x}'(mu)^{dagger}mathbf{x}(mu) + mathbf{x}(mu)^{dagger}mathbf{x}'(mu)tag{A12}label{A12}\
            &=mathbf{x}'(mu)^{dagger}P P mathbf{x}(mu) + mathbf{x}(mu)^{dagger}PPmathbf{x}'(mu)\
            &=mathbf{x}_{mathcal{U}}'(mu)^{dagger}mathbf{x}_{mathcal{U}}(mu) + mathbf{x}_{mathcal{U}}(mu)^{dagger}mathbf{x}_{mathcal{U}}'(mu)\
            &=-2mathbf{x}_{mathcal{U}}(mu)^{dagger}left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu).tag{A13}label{A13}
            end{align}

            It can be readily seen from its definition that $S_{mathcal{U}}$ is positive definite, hence $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is positive definite for $mu geq 0$. Since $A^{dagger}A$ is also positive definite we obtain from (6) together with (7) that $mathbf{x}(mu)$ is not diverging for $mugeq 0$. Therefore, from eqref{A13} we obtain $frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 leq 0$ for $mu geq 0$, that is $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$. However, the monotonicity is not strict because $rm{d}|mathbf{x}(mu)|^2/rm{d}mu$ vanishes when $mathbf{x}_{mathcal{U}}(mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $mathbf{x}_{mathcal{U}}(mu) = 0$ is $mathbf{x}(mu) = gammamathbf{c}/|mathbf{c}|^2 = mathbf{x}_{infty}$. Since this is also the asymptotic solution from eqref{A3}, we have $lim_{mu to infty} rm{d}|mathbf{x}(mu)|^2/rm{d}mu = 0$. Moreover, if (6) yields $mathbf{x}_{infty}$ for $mu < infty$, it must be the solution for all $mu$.



            For $mu < 0$, $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $mu$ matches eigenvalues of $A^{dagger}A$ or $S_{mathcal{U}}$.



            (Q2)



            We have to distinguish two cases:




            • $alpha^2 > |gamma|^2/|mathbf{c}|^2$:

              With the monotonicity of $|mathbf{x}(mu)|^2$ for $mu geq 0$ and eqref{A4}, we find a $mu^star: g(mathbf{x}(mu^star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(mathbf{x}^*,mu^*, lambda^*)$, where $mathbf{x}^*$ is a local optimum for the optimization problem and $(mu^*,lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
              begin{align}
              g(mathbf{x}^*) &leq 0,tag{A14}label{A14}\
              h(mathbf{x}^*) &= 0,tag{A15}label{A15}\
              mu^* &geq 0,tag{A16}label{A16}\
              mu^*g(mathbf{x}^*) &= 0.tag{A17}label{A17}
              end{align}

              eqref{A16} answers the question for this case.


            • $alpha^2 = |gamma|^2/|mathbf{c}|^2$:
              Slater's condition does not hold, however, the only allowed solution is $mathbf{x} = mathbf{x}_{infty}$, the asymptotic solution. Therefore, we have $mu^* to infty$.



            For both cases we get $mu^*
            geq 0$
            .



            (Q3)



            For $mathbf{x}(mu)$ from (6), eqref{A15} holds. The remaining task is to find the optimal $mu^* geq 0$ such that the remaining KKT-conditions hold. To satisfy eqref{A17},
            we require $mu^* = 0$ if $g(mathbf{x}(mu^*=0)) < 0$ and $mu^* >0$ otherwise. For the latter case we require $|mathbf{x}(mu^*)|^2 = alpha^2$ such that (A14) holds. Due to the fact that $|mathbf{x}(mu)|^2$ is monotonically decreasing for $mu geq 0$, we find $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$ and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Answers



              (Q1)



              $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$ with $lim_{mu to infty}|mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2$. If for a fixed $mu: 0 leq mu < infty$ the solution is
              $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$, then this is the solution for all non-negative values of $mu$.
              For $mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.



              (Q2)



              Yes, see below.



              (Q3)



              Yes and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$, with $mathbf{x}(mu)$ from (6). Although this solution also holds for the case $alpha^2 = |gamma|^2/|mathbf{c}|^2$, where the only allowed solution is the one for $mu to infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.



              Strategy for numerical solution



              For $alpha^2 = |gamma|^2/|mathbf{c}|^2$, no calculation is necessary since the only allowed solution is $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.

              For $alpha^2 > |gamma|^2/|mathbf{c}|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $mathbf{x}(mu)$ according to (6), starting with $mu=0$ and increase $mu$ until (C1) holds.

              No solution exists obviously for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.



              Proofs/Reasons



              (Q1)



              We first investigate the asymptotic solution for large $mu$.
              As a first step we divide the first row of (3) by $mu$:
              $$
              left(A^{dagger} A/mu + Iright) mathbf{x}(mu) + mathbf{c} lambda(mu)/mu = mathbf{y}/mu.tag{A1}label{A1}
              $$

              Multiplying eqref{A1} from the left with $mathbf{c}^{dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
              $$
              lim_{mu to infty}lambda(mu)/mu = -gamma/|mathbf{c}|^2tag{A2}.label{A2}
              $$

              With eqref{A2} in the asymptotic limit of eqref{A1}, we find
              $$
              lim_{mu to infty} mathbf{x}(mu) = gamma mathbf{c} /|mathbf{c}|^2=:mathbf{x}_{infty},tag{A3}label{A3}
              $$

              and thus
              $$
              lim_{mu to infty} |mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2.tag{A4}label{A4}
              $$

              To investigate the monotonicity of $|mathbf{x}(mu)|^2$ we start with differentiating (3) w.r.t. $mu$: The first row yields
              $$
              mathbf{x}(mu) + (A^{dagger}A + mu I) mathbf{x}'(mu) + mathbf{c}lambda'(mu) = 0,tag{A5}label{A5}
              $$
              and the second row the trivial condition $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$. We use for the function derivative w.r.t. $mu$ the abbreviation $u'(mu) equiv rm{d}, u(mu)/rm{d}mu$.
              Multiplying eqref{A5} with $mathbf{c}^{dagger}$ from left we obtain
              $$
              gamma + mathbf{c}^{dagger} A^{dagger}Amathbf{x}'(mu) + |mathbf{c}|^2lambda'(mu) = 0,tag{A6}label{A6}
              $$

              which yields
              $$
              lambda'(mu) = -dfrac{
              gamma + mathbf{c}^{dagger}A^{dagger}A mathbf{x}'(mu)}{|mathbf{c}|^2}.tag{A7}label{A7}
              $$

              Using eqref{A7} in eqref{A5} we get a conditional equation for $mathbf{x}'(mu)$:
              $$
              left(left(I - dfrac{mathbf{c}mathbf{c}^{dagger}}{|mathbf{c}|^2}right)A^{dagger}A + mu Iright) mathbf{x}'(mu) = frac{gamma mathbf{c}}{|mathbf{c}|^2} - mathbf{x}(mu).tag{A8}label{A8}
              $$

              On the left hand side the orthogonal projector $P:=I - mathbf{c}mathbf{c}^{dagger}/|mathbf{c}|^2$ appears that maps elements of $mathbb{C}^n$ to $mathcal{U} = {mathbf{x} in mathbb{C}^n mid mathbf{c}^{dagger}mathbf{x} = 0}subset mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $mathbf{c}$. Multiplying eqref{A8} with $P$ from left we get:
              $$
              left(PA^{dagger}A + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu).tag{A9}label{A9}
              $$

              Since $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$, which is equivalent to $Pmathbf{x}'(mu) = mathbf{x}'(mu)$, we can further write
              $$
              left(PA^{dagger}AP + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu),tag{A10}label{A10}
              $$

              which is a linear equation on $mathcal{U}$ only that completely determines $mathbf{x}'(mu)$. We expand eqref{A10} in an orthonormal basis of $mathcal{U}$ and use the following notation: $mathbf{x}_{mathcal{U}}(mu)$, $mathbf{x}'_{mathcal{U}}(mu)$ for the representation of $Pmathbf{x}(mu)$, $mathbf{x}'(mu)$ in $mathcal{U}$, $I_{mathcal{U}}$ for the identity in $mathcal{U}$ and $S_{mathcal{U}}$ for the representation of $PA^{dagger}AP$ in $mathcal{U}$.
              We can write
              $$
              mathbf{x}'_{mathcal{U}} = -left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu),tag{A11}label{A11}
              $$
              and it follows
              begin{align}
              frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 & = mathbf{x}'(mu)^{dagger}mathbf{x}(mu) + mathbf{x}(mu)^{dagger}mathbf{x}'(mu)tag{A12}label{A12}\
              &=mathbf{x}'(mu)^{dagger}P P mathbf{x}(mu) + mathbf{x}(mu)^{dagger}PPmathbf{x}'(mu)\
              &=mathbf{x}_{mathcal{U}}'(mu)^{dagger}mathbf{x}_{mathcal{U}}(mu) + mathbf{x}_{mathcal{U}}(mu)^{dagger}mathbf{x}_{mathcal{U}}'(mu)\
              &=-2mathbf{x}_{mathcal{U}}(mu)^{dagger}left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu).tag{A13}label{A13}
              end{align}

              It can be readily seen from its definition that $S_{mathcal{U}}$ is positive definite, hence $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is positive definite for $mu geq 0$. Since $A^{dagger}A$ is also positive definite we obtain from (6) together with (7) that $mathbf{x}(mu)$ is not diverging for $mugeq 0$. Therefore, from eqref{A13} we obtain $frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 leq 0$ for $mu geq 0$, that is $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$. However, the monotonicity is not strict because $rm{d}|mathbf{x}(mu)|^2/rm{d}mu$ vanishes when $mathbf{x}_{mathcal{U}}(mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $mathbf{x}_{mathcal{U}}(mu) = 0$ is $mathbf{x}(mu) = gammamathbf{c}/|mathbf{c}|^2 = mathbf{x}_{infty}$. Since this is also the asymptotic solution from eqref{A3}, we have $lim_{mu to infty} rm{d}|mathbf{x}(mu)|^2/rm{d}mu = 0$. Moreover, if (6) yields $mathbf{x}_{infty}$ for $mu < infty$, it must be the solution for all $mu$.



              For $mu < 0$, $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $mu$ matches eigenvalues of $A^{dagger}A$ or $S_{mathcal{U}}$.



              (Q2)



              We have to distinguish two cases:




              • $alpha^2 > |gamma|^2/|mathbf{c}|^2$:

                With the monotonicity of $|mathbf{x}(mu)|^2$ for $mu geq 0$ and eqref{A4}, we find a $mu^star: g(mathbf{x}(mu^star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(mathbf{x}^*,mu^*, lambda^*)$, where $mathbf{x}^*$ is a local optimum for the optimization problem and $(mu^*,lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
                begin{align}
                g(mathbf{x}^*) &leq 0,tag{A14}label{A14}\
                h(mathbf{x}^*) &= 0,tag{A15}label{A15}\
                mu^* &geq 0,tag{A16}label{A16}\
                mu^*g(mathbf{x}^*) &= 0.tag{A17}label{A17}
                end{align}

                eqref{A16} answers the question for this case.


              • $alpha^2 = |gamma|^2/|mathbf{c}|^2$:
                Slater's condition does not hold, however, the only allowed solution is $mathbf{x} = mathbf{x}_{infty}$, the asymptotic solution. Therefore, we have $mu^* to infty$.



              For both cases we get $mu^*
              geq 0$
              .



              (Q3)



              For $mathbf{x}(mu)$ from (6), eqref{A15} holds. The remaining task is to find the optimal $mu^* geq 0$ such that the remaining KKT-conditions hold. To satisfy eqref{A17},
              we require $mu^* = 0$ if $g(mathbf{x}(mu^*=0)) < 0$ and $mu^* >0$ otherwise. For the latter case we require $|mathbf{x}(mu^*)|^2 = alpha^2$ such that (A14) holds. Due to the fact that $|mathbf{x}(mu)|^2$ is monotonically decreasing for $mu geq 0$, we find $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$ and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Answers



                (Q1)



                $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$ with $lim_{mu to infty}|mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2$. If for a fixed $mu: 0 leq mu < infty$ the solution is
                $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$, then this is the solution for all non-negative values of $mu$.
                For $mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.



                (Q2)



                Yes, see below.



                (Q3)



                Yes and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$, with $mathbf{x}(mu)$ from (6). Although this solution also holds for the case $alpha^2 = |gamma|^2/|mathbf{c}|^2$, where the only allowed solution is the one for $mu to infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.



                Strategy for numerical solution



                For $alpha^2 = |gamma|^2/|mathbf{c}|^2$, no calculation is necessary since the only allowed solution is $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.

                For $alpha^2 > |gamma|^2/|mathbf{c}|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $mathbf{x}(mu)$ according to (6), starting with $mu=0$ and increase $mu$ until (C1) holds.

                No solution exists obviously for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.



                Proofs/Reasons



                (Q1)



                We first investigate the asymptotic solution for large $mu$.
                As a first step we divide the first row of (3) by $mu$:
                $$
                left(A^{dagger} A/mu + Iright) mathbf{x}(mu) + mathbf{c} lambda(mu)/mu = mathbf{y}/mu.tag{A1}label{A1}
                $$

                Multiplying eqref{A1} from the left with $mathbf{c}^{dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
                $$
                lim_{mu to infty}lambda(mu)/mu = -gamma/|mathbf{c}|^2tag{A2}.label{A2}
                $$

                With eqref{A2} in the asymptotic limit of eqref{A1}, we find
                $$
                lim_{mu to infty} mathbf{x}(mu) = gamma mathbf{c} /|mathbf{c}|^2=:mathbf{x}_{infty},tag{A3}label{A3}
                $$

                and thus
                $$
                lim_{mu to infty} |mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2.tag{A4}label{A4}
                $$

                To investigate the monotonicity of $|mathbf{x}(mu)|^2$ we start with differentiating (3) w.r.t. $mu$: The first row yields
                $$
                mathbf{x}(mu) + (A^{dagger}A + mu I) mathbf{x}'(mu) + mathbf{c}lambda'(mu) = 0,tag{A5}label{A5}
                $$
                and the second row the trivial condition $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$. We use for the function derivative w.r.t. $mu$ the abbreviation $u'(mu) equiv rm{d}, u(mu)/rm{d}mu$.
                Multiplying eqref{A5} with $mathbf{c}^{dagger}$ from left we obtain
                $$
                gamma + mathbf{c}^{dagger} A^{dagger}Amathbf{x}'(mu) + |mathbf{c}|^2lambda'(mu) = 0,tag{A6}label{A6}
                $$

                which yields
                $$
                lambda'(mu) = -dfrac{
                gamma + mathbf{c}^{dagger}A^{dagger}A mathbf{x}'(mu)}{|mathbf{c}|^2}.tag{A7}label{A7}
                $$

                Using eqref{A7} in eqref{A5} we get a conditional equation for $mathbf{x}'(mu)$:
                $$
                left(left(I - dfrac{mathbf{c}mathbf{c}^{dagger}}{|mathbf{c}|^2}right)A^{dagger}A + mu Iright) mathbf{x}'(mu) = frac{gamma mathbf{c}}{|mathbf{c}|^2} - mathbf{x}(mu).tag{A8}label{A8}
                $$

                On the left hand side the orthogonal projector $P:=I - mathbf{c}mathbf{c}^{dagger}/|mathbf{c}|^2$ appears that maps elements of $mathbb{C}^n$ to $mathcal{U} = {mathbf{x} in mathbb{C}^n mid mathbf{c}^{dagger}mathbf{x} = 0}subset mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $mathbf{c}$. Multiplying eqref{A8} with $P$ from left we get:
                $$
                left(PA^{dagger}A + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu).tag{A9}label{A9}
                $$

                Since $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$, which is equivalent to $Pmathbf{x}'(mu) = mathbf{x}'(mu)$, we can further write
                $$
                left(PA^{dagger}AP + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu),tag{A10}label{A10}
                $$

                which is a linear equation on $mathcal{U}$ only that completely determines $mathbf{x}'(mu)$. We expand eqref{A10} in an orthonormal basis of $mathcal{U}$ and use the following notation: $mathbf{x}_{mathcal{U}}(mu)$, $mathbf{x}'_{mathcal{U}}(mu)$ for the representation of $Pmathbf{x}(mu)$, $mathbf{x}'(mu)$ in $mathcal{U}$, $I_{mathcal{U}}$ for the identity in $mathcal{U}$ and $S_{mathcal{U}}$ for the representation of $PA^{dagger}AP$ in $mathcal{U}$.
                We can write
                $$
                mathbf{x}'_{mathcal{U}} = -left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu),tag{A11}label{A11}
                $$
                and it follows
                begin{align}
                frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 & = mathbf{x}'(mu)^{dagger}mathbf{x}(mu) + mathbf{x}(mu)^{dagger}mathbf{x}'(mu)tag{A12}label{A12}\
                &=mathbf{x}'(mu)^{dagger}P P mathbf{x}(mu) + mathbf{x}(mu)^{dagger}PPmathbf{x}'(mu)\
                &=mathbf{x}_{mathcal{U}}'(mu)^{dagger}mathbf{x}_{mathcal{U}}(mu) + mathbf{x}_{mathcal{U}}(mu)^{dagger}mathbf{x}_{mathcal{U}}'(mu)\
                &=-2mathbf{x}_{mathcal{U}}(mu)^{dagger}left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu).tag{A13}label{A13}
                end{align}

                It can be readily seen from its definition that $S_{mathcal{U}}$ is positive definite, hence $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is positive definite for $mu geq 0$. Since $A^{dagger}A$ is also positive definite we obtain from (6) together with (7) that $mathbf{x}(mu)$ is not diverging for $mugeq 0$. Therefore, from eqref{A13} we obtain $frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 leq 0$ for $mu geq 0$, that is $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$. However, the monotonicity is not strict because $rm{d}|mathbf{x}(mu)|^2/rm{d}mu$ vanishes when $mathbf{x}_{mathcal{U}}(mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $mathbf{x}_{mathcal{U}}(mu) = 0$ is $mathbf{x}(mu) = gammamathbf{c}/|mathbf{c}|^2 = mathbf{x}_{infty}$. Since this is also the asymptotic solution from eqref{A3}, we have $lim_{mu to infty} rm{d}|mathbf{x}(mu)|^2/rm{d}mu = 0$. Moreover, if (6) yields $mathbf{x}_{infty}$ for $mu < infty$, it must be the solution for all $mu$.



                For $mu < 0$, $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $mu$ matches eigenvalues of $A^{dagger}A$ or $S_{mathcal{U}}$.



                (Q2)



                We have to distinguish two cases:




                • $alpha^2 > |gamma|^2/|mathbf{c}|^2$:

                  With the monotonicity of $|mathbf{x}(mu)|^2$ for $mu geq 0$ and eqref{A4}, we find a $mu^star: g(mathbf{x}(mu^star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(mathbf{x}^*,mu^*, lambda^*)$, where $mathbf{x}^*$ is a local optimum for the optimization problem and $(mu^*,lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
                  begin{align}
                  g(mathbf{x}^*) &leq 0,tag{A14}label{A14}\
                  h(mathbf{x}^*) &= 0,tag{A15}label{A15}\
                  mu^* &geq 0,tag{A16}label{A16}\
                  mu^*g(mathbf{x}^*) &= 0.tag{A17}label{A17}
                  end{align}

                  eqref{A16} answers the question for this case.


                • $alpha^2 = |gamma|^2/|mathbf{c}|^2$:
                  Slater's condition does not hold, however, the only allowed solution is $mathbf{x} = mathbf{x}_{infty}$, the asymptotic solution. Therefore, we have $mu^* to infty$.



                For both cases we get $mu^*
                geq 0$
                .



                (Q3)



                For $mathbf{x}(mu)$ from (6), eqref{A15} holds. The remaining task is to find the optimal $mu^* geq 0$ such that the remaining KKT-conditions hold. To satisfy eqref{A17},
                we require $mu^* = 0$ if $g(mathbf{x}(mu^*=0)) < 0$ and $mu^* >0$ otherwise. For the latter case we require $|mathbf{x}(mu^*)|^2 = alpha^2$ such that (A14) holds. Due to the fact that $|mathbf{x}(mu)|^2$ is monotonically decreasing for $mu geq 0$, we find $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$ and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$.






                share|cite|improve this answer











                $endgroup$



                Answers



                (Q1)



                $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$ with $lim_{mu to infty}|mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2$. If for a fixed $mu: 0 leq mu < infty$ the solution is
                $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$, then this is the solution for all non-negative values of $mu$.
                For $mu <0$ monotonicity holds not on the whole domain of negative real numbers and jump discontinuities can appear.



                (Q2)



                Yes, see below.



                (Q3)



                Yes and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$, with $mathbf{x}(mu)$ from (6). Although this solution also holds for the case $alpha^2 = |gamma|^2/|mathbf{c}|^2$, where the only allowed solution is the one for $mu to infty$, in practice no limit must be taken due to the fact that the solution is already determined to be $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.



                Strategy for numerical solution



                For $alpha^2 = |gamma|^2/|mathbf{c}|^2$, no calculation is necessary since the only allowed solution is $mathbf{x}^* = gamma mathbf{c} /|mathbf{c}|^2$.

                For $alpha^2 > |gamma|^2/|mathbf{c}|^2$, the numerical procedure to calculate the optimal solution simplifies with the help of the answers of (Q1) and (Q2) to calculate $mathbf{x}(mu)$ according to (6), starting with $mu=0$ and increase $mu$ until (C1) holds.

                No solution exists obviously for $alpha^2 < |gamma|^2/|mathbf{c}|^2$.



                Proofs/Reasons



                (Q1)



                We first investigate the asymptotic solution for large $mu$.
                As a first step we divide the first row of (3) by $mu$:
                $$
                left(A^{dagger} A/mu + Iright) mathbf{x}(mu) + mathbf{c} lambda(mu)/mu = mathbf{y}/mu.tag{A1}label{A1}
                $$

                Multiplying eqref{A1} from the left with $mathbf{c}^{dagger}$ and using both, the constraint (C2) and the fact that we look for solutions with bounded norm only, we obtain the asymptotic expression
                $$
                lim_{mu to infty}lambda(mu)/mu = -gamma/|mathbf{c}|^2tag{A2}.label{A2}
                $$

                With eqref{A2} in the asymptotic limit of eqref{A1}, we find
                $$
                lim_{mu to infty} mathbf{x}(mu) = gamma mathbf{c} /|mathbf{c}|^2=:mathbf{x}_{infty},tag{A3}label{A3}
                $$

                and thus
                $$
                lim_{mu to infty} |mathbf{x}(mu)|^2 = |gamma|^2/|mathbf{c}|^2.tag{A4}label{A4}
                $$

                To investigate the monotonicity of $|mathbf{x}(mu)|^2$ we start with differentiating (3) w.r.t. $mu$: The first row yields
                $$
                mathbf{x}(mu) + (A^{dagger}A + mu I) mathbf{x}'(mu) + mathbf{c}lambda'(mu) = 0,tag{A5}label{A5}
                $$
                and the second row the trivial condition $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$. We use for the function derivative w.r.t. $mu$ the abbreviation $u'(mu) equiv rm{d}, u(mu)/rm{d}mu$.
                Multiplying eqref{A5} with $mathbf{c}^{dagger}$ from left we obtain
                $$
                gamma + mathbf{c}^{dagger} A^{dagger}Amathbf{x}'(mu) + |mathbf{c}|^2lambda'(mu) = 0,tag{A6}label{A6}
                $$

                which yields
                $$
                lambda'(mu) = -dfrac{
                gamma + mathbf{c}^{dagger}A^{dagger}A mathbf{x}'(mu)}{|mathbf{c}|^2}.tag{A7}label{A7}
                $$

                Using eqref{A7} in eqref{A5} we get a conditional equation for $mathbf{x}'(mu)$:
                $$
                left(left(I - dfrac{mathbf{c}mathbf{c}^{dagger}}{|mathbf{c}|^2}right)A^{dagger}A + mu Iright) mathbf{x}'(mu) = frac{gamma mathbf{c}}{|mathbf{c}|^2} - mathbf{x}(mu).tag{A8}label{A8}
                $$

                On the left hand side the orthogonal projector $P:=I - mathbf{c}mathbf{c}^{dagger}/|mathbf{c}|^2$ appears that maps elements of $mathbb{C}^n$ to $mathcal{U} = {mathbf{x} in mathbb{C}^n mid mathbf{c}^{dagger}mathbf{x} = 0}subset mathbb{C}^n$, the subspace orthogonal to the one-dimensional subspace along $mathbf{c}$. Multiplying eqref{A8} with $P$ from left we get:
                $$
                left(PA^{dagger}A + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu).tag{A9}label{A9}
                $$

                Since $mathbf{c}^{dagger} mathbf{x}'(mu) = 0$, which is equivalent to $Pmathbf{x}'(mu) = mathbf{x}'(mu)$, we can further write
                $$
                left(PA^{dagger}AP + mu P right) mathbf{x}'(mu) = -Pmathbf{x}(mu),tag{A10}label{A10}
                $$

                which is a linear equation on $mathcal{U}$ only that completely determines $mathbf{x}'(mu)$. We expand eqref{A10} in an orthonormal basis of $mathcal{U}$ and use the following notation: $mathbf{x}_{mathcal{U}}(mu)$, $mathbf{x}'_{mathcal{U}}(mu)$ for the representation of $Pmathbf{x}(mu)$, $mathbf{x}'(mu)$ in $mathcal{U}$, $I_{mathcal{U}}$ for the identity in $mathcal{U}$ and $S_{mathcal{U}}$ for the representation of $PA^{dagger}AP$ in $mathcal{U}$.
                We can write
                $$
                mathbf{x}'_{mathcal{U}} = -left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu),tag{A11}label{A11}
                $$
                and it follows
                begin{align}
                frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 & = mathbf{x}'(mu)^{dagger}mathbf{x}(mu) + mathbf{x}(mu)^{dagger}mathbf{x}'(mu)tag{A12}label{A12}\
                &=mathbf{x}'(mu)^{dagger}P P mathbf{x}(mu) + mathbf{x}(mu)^{dagger}PPmathbf{x}'(mu)\
                &=mathbf{x}_{mathcal{U}}'(mu)^{dagger}mathbf{x}_{mathcal{U}}(mu) + mathbf{x}_{mathcal{U}}(mu)^{dagger}mathbf{x}_{mathcal{U}}'(mu)\
                &=-2mathbf{x}_{mathcal{U}}(mu)^{dagger}left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}mathbf{x}_{mathcal{U}}(mu).tag{A13}label{A13}
                end{align}

                It can be readily seen from its definition that $S_{mathcal{U}}$ is positive definite, hence $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is positive definite for $mu geq 0$. Since $A^{dagger}A$ is also positive definite we obtain from (6) together with (7) that $mathbf{x}(mu)$ is not diverging for $mugeq 0$. Therefore, from eqref{A13} we obtain $frac{rm{d}}{rm{d}mu}|mathbf{x}(mu)|^2 leq 0$ for $mu geq 0$, that is $|mathbf{x}(mu)|^2$ is monotonically decreasing without jump discontinuities for $mu geq 0$. However, the monotonicity is not strict because $rm{d}|mathbf{x}(mu)|^2/rm{d}mu$ vanishes when $mathbf{x}_{mathcal{U}}(mu) = 0$. The only solution compatible with both constraints (C1) and (C2) that yields $mathbf{x}_{mathcal{U}}(mu) = 0$ is $mathbf{x}(mu) = gammamathbf{c}/|mathbf{c}|^2 = mathbf{x}_{infty}$. Since this is also the asymptotic solution from eqref{A3}, we have $lim_{mu to infty} rm{d}|mathbf{x}(mu)|^2/rm{d}mu = 0$. Moreover, if (6) yields $mathbf{x}_{infty}$ for $mu < infty$, it must be the solution for all $mu$.



                For $mu < 0$, $left(S_{mathcal{U}} + mu I_{mathcal{U}}right)^{-1}$ is not guaranteed to be positive definite and hence monotonicity is not given on the whole domain of negative real numbers. Moreover, jump discontinuities can appear where $mu$ matches eigenvalues of $A^{dagger}A$ or $S_{mathcal{U}}$.



                (Q2)



                We have to distinguish two cases:




                • $alpha^2 > |gamma|^2/|mathbf{c}|^2$:

                  With the monotonicity of $|mathbf{x}(mu)|^2$ for $mu geq 0$ and eqref{A4}, we find a $mu^star: g(mathbf{x}(mu^star)) < 0$. Therefore, Slater's condition holds which guarantees strong duality of the convex optimization problem and thus the existence of a KKT-point $(mathbf{x}^*,mu^*, lambda^*)$, where $mathbf{x}^*$ is a local optimum for the optimization problem and $(mu^*,lambda^*)$ for the corresponding dual problem. Due to the convexity and strong duality of the problem the following KKT-conditions are sufficient conditions for the global optimum:
                  begin{align}
                  g(mathbf{x}^*) &leq 0,tag{A14}label{A14}\
                  h(mathbf{x}^*) &= 0,tag{A15}label{A15}\
                  mu^* &geq 0,tag{A16}label{A16}\
                  mu^*g(mathbf{x}^*) &= 0.tag{A17}label{A17}
                  end{align}

                  eqref{A16} answers the question for this case.


                • $alpha^2 = |gamma|^2/|mathbf{c}|^2$:
                  Slater's condition does not hold, however, the only allowed solution is $mathbf{x} = mathbf{x}_{infty}$, the asymptotic solution. Therefore, we have $mu^* to infty$.



                For both cases we get $mu^*
                geq 0$
                .



                (Q3)



                For $mathbf{x}(mu)$ from (6), eqref{A15} holds. The remaining task is to find the optimal $mu^* geq 0$ such that the remaining KKT-conditions hold. To satisfy eqref{A17},
                we require $mu^* = 0$ if $g(mathbf{x}(mu^*=0)) < 0$ and $mu^* >0$ otherwise. For the latter case we require $|mathbf{x}(mu^*)|^2 = alpha^2$ such that (A14) holds. Due to the fact that $|mathbf{x}(mu)|^2$ is monotonically decreasing for $mu geq 0$, we find $mu^* = inf, {mu geq 0 mid g(mathbf{x}(mu)) leq 0}$ and the global optimal solution is given by $mathbf{x}^* = mathbf{x}(mu^*)$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 18 '18 at 19:30

























                answered Dec 15 '18 at 18:09









                Karsten LeonhardtKarsten Leonhardt

                365




                365






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028827%2fnorm-constrained-least-square-minimization-with-an-additional-single-linear-equa%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                    How to change which sound is reproduced for terminal bell?

                    Can I use Tabulator js library in my java Spring + Thymeleaf project?