Finding $int_0^infty frac{arctan(pcdot x)cdot arctan(qcdot x)}{x^2} text{d}t$
$begingroup$
I am attempting to derive the value of the integral
$$
I(p,q)= intlimits_0^infty frac{arctan(pcdot x)cdot arctan(qcdot x)}{x^2} text{d}x
$$
Differentiating the I w.r.t. p and then q gives the expression
$$
frac{partial^2 I}{partial p , partial q} = frac{pi}{2(p+q)}
$$
Now I want to solve this equation but unclear as to how the constant(s) of integration may be found.
pde definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
I am attempting to derive the value of the integral
$$
I(p,q)= intlimits_0^infty frac{arctan(pcdot x)cdot arctan(qcdot x)}{x^2} text{d}x
$$
Differentiating the I w.r.t. p and then q gives the expression
$$
frac{partial^2 I}{partial p , partial q} = frac{pi}{2(p+q)}
$$
Now I want to solve this equation but unclear as to how the constant(s) of integration may be found.
pde definite-integrals improper-integrals
$endgroup$
add a comment |
$begingroup$
I am attempting to derive the value of the integral
$$
I(p,q)= intlimits_0^infty frac{arctan(pcdot x)cdot arctan(qcdot x)}{x^2} text{d}x
$$
Differentiating the I w.r.t. p and then q gives the expression
$$
frac{partial^2 I}{partial p , partial q} = frac{pi}{2(p+q)}
$$
Now I want to solve this equation but unclear as to how the constant(s) of integration may be found.
pde definite-integrals improper-integrals
$endgroup$
I am attempting to derive the value of the integral
$$
I(p,q)= intlimits_0^infty frac{arctan(pcdot x)cdot arctan(qcdot x)}{x^2} text{d}x
$$
Differentiating the I w.r.t. p and then q gives the expression
$$
frac{partial^2 I}{partial p , partial q} = frac{pi}{2(p+q)}
$$
Now I want to solve this equation but unclear as to how the constant(s) of integration may be found.
pde definite-integrals improper-integrals
pde definite-integrals improper-integrals
edited Dec 6 '18 at 18:22
J.G.
29.1k22845
29.1k22845
asked Dec 6 '18 at 17:40
Callie12Callie12
10410
10410
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Use the fact that $I(p,0) = I(0,q) = 0$.
$endgroup$
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028807%2ffinding-int-0-infty-frac-arctanp-cdot-x-cdot-arctanq-cdot-xx2-tex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use the fact that $I(p,0) = I(0,q) = 0$.
$endgroup$
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
add a comment |
$begingroup$
Use the fact that $I(p,0) = I(0,q) = 0$.
$endgroup$
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
add a comment |
$begingroup$
Use the fact that $I(p,0) = I(0,q) = 0$.
$endgroup$
Use the fact that $I(p,0) = I(0,q) = 0$.
answered Dec 6 '18 at 17:55
Robert IsraelRobert Israel
326k23215469
326k23215469
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
add a comment |
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
$begingroup$
Plus the derivatives vanish when an argument is $0$.
$endgroup$
– J.G.
Dec 6 '18 at 18:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3028807%2ffinding-int-0-infty-frac-arctanp-cdot-x-cdot-arctanq-cdot-xx2-tex%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown