A Second Order Ordinary Differential equation with one known solution












0












$begingroup$


This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.



Problem:

Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.

Answer:

Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}

begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}

Hence the general solution is:
$$ y = C_0x^4 + C_1x $$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Wolfram alpha gives your answer
    $endgroup$
    – Kenny Lau
    Dec 3 '18 at 1:28
















0












$begingroup$


This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.



Problem:

Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.

Answer:

Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}

begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}

Hence the general solution is:
$$ y = C_0x^4 + C_1x $$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Wolfram alpha gives your answer
    $endgroup$
    – Kenny Lau
    Dec 3 '18 at 1:28














0












0








0





$begingroup$


This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.



Problem:

Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.

Answer:

Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}

begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}

Hence the general solution is:
$$ y = C_0x^4 + C_1x $$










share|cite|improve this question









$endgroup$




This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.



Problem:

Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.

Answer:

Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}

begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}

Hence the general solution is:
$$ y = C_0x^4 + C_1x $$







integration ordinary-differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Dec 2 '18 at 2:50









BobBob

918515




918515








  • 1




    $begingroup$
    Wolfram alpha gives your answer
    $endgroup$
    – Kenny Lau
    Dec 3 '18 at 1:28














  • 1




    $begingroup$
    Wolfram alpha gives your answer
    $endgroup$
    – Kenny Lau
    Dec 3 '18 at 1:28








1




1




$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28




$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022156%2fa-second-order-ordinary-differential-equation-with-one-known-solution%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022156%2fa-second-order-ordinary-differential-equation-with-one-known-solution%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Biblatex bibliography style without URLs when DOI exists (in Overleaf with Zotero bibliography)

ComboBox Display Member on multiple fields

Is it possible to collect Nectar points via Trainline?