A Second Order Ordinary Differential equation with one known solution
$begingroup$
This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.
Problem:
Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}
begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}
Hence the general solution is:
$$ y = C_0x^4 + C_1x $$
integration ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.
Problem:
Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}
begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}
Hence the general solution is:
$$ y = C_0x^4 + C_1x $$
integration ordinary-differential-equations
$endgroup$
1
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28
add a comment |
$begingroup$
This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.
Problem:
Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}
begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}
Hence the general solution is:
$$ y = C_0x^4 + C_1x $$
integration ordinary-differential-equations
$endgroup$
This problem is from the book "Introduction to Ordinary Differential Equations" by Shepley L. Ross. I am thinking I did the problem correctly because my answer matches the answer in the back of the book. What bothers me is the fact the second solution includes the first solution.
Problem:
Given that $y = x$ is a solution of
$$ x^2y'' - 4xy' + 4y = 0$$
find a linearly independent solution by reducing the order. Write the general solution.
Answer:
Let $f(x)$ represent the solution we have.
begin{eqnarray*}
f(x) &=& x \
y &=& f(x) v = xv \
y' &=& x v' + v \
y'' &=& x v'' + v' + v' = xv'' + 2v' \
end{eqnarray*}
begin{eqnarray*}
x^2(xv'' + 2v') - 4x(x v' + v) + 4xv &=& 0 \
x^3v'' + 2x^2v' - 4x^2v' &=& 0 \
x^3v'' - 2x^2v' &=& 0 \
text{Let }w &=& frac{dv}{dx} \
x^3 w' - 2x^2 w &=& 0 \
x w' - 2 w &=& 0 \
x w' &=& 2w \
x frac{dw}{dx} &=& 2w \
frac{x}{dx} &=& frac{2w}{dw} \
frac{x}{2dx} &=& frac{w}{dw} \
frac{ 2dx}{x} &=& frac{dw}{w} \
2ln{x} &=& ln{w} + c_0 \
x^2 &=& c_1 w \
x^2 &=& c_1 frac{dv}{dx} \
frac{dv}{dx} &=& c_2 x^2 \
v &=& c_3 x^3 + c_4 \
frac{y}{x} &=& c_3 x^3 + c_4 \
y &=& c_3 x^4 + c_4 x \
end{eqnarray*}
Hence the general solution is:
$$ y = C_0x^4 + C_1x $$
integration ordinary-differential-equations
integration ordinary-differential-equations
asked Dec 2 '18 at 2:50
BobBob
918515
918515
1
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28
add a comment |
1
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28
1
1
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022156%2fa-second-order-ordinary-differential-equation-with-one-known-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022156%2fa-second-order-ordinary-differential-equation-with-one-known-solution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Wolfram alpha gives your answer
$endgroup$
– Kenny Lau
Dec 3 '18 at 1:28