Prove normal matrices are RPN (Range perpendicular to Null space) Matrices?
$begingroup$
For a normal matrix $A$, $A^* A = A A^*$ where $A^*$ is the conjugate transpose of $A$
Prove that for normal matrices
$$C(A) perp N(A)$$
linear-algebra
$endgroup$
add a comment |
$begingroup$
For a normal matrix $A$, $A^* A = A A^*$ where $A^*$ is the conjugate transpose of $A$
Prove that for normal matrices
$$C(A) perp N(A)$$
linear-algebra
$endgroup$
add a comment |
$begingroup$
For a normal matrix $A$, $A^* A = A A^*$ where $A^*$ is the conjugate transpose of $A$
Prove that for normal matrices
$$C(A) perp N(A)$$
linear-algebra
$endgroup$
For a normal matrix $A$, $A^* A = A A^*$ where $A^*$ is the conjugate transpose of $A$
Prove that for normal matrices
$$C(A) perp N(A)$$
linear-algebra
linear-algebra
asked Nov 27 '18 at 4:08
Nagabhushan S NNagabhushan S N
260214
260214
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I will use the language of linear transformations. We have $|A^{*}x|^{2}=langle A^{*}x, A^{*}xrangle =langle AA^{*}x, xrangle =langle A^{*}Ax, xrangle ==langle Ax, Axrangle =|Ax|^{2}$ which shows that for any $x$ in the null space of $A$ we also have $A^{*}x=0$. Now let $x$ be in the null space of $A$ and consider any vector $Ay$ in the range of $A$. We have $langle Ay, xrangle =langle y, A^{*}xrangle =langle y, 0rangle =0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015324%2fprove-normal-matrices-are-rpn-range-perpendicular-to-null-space-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I will use the language of linear transformations. We have $|A^{*}x|^{2}=langle A^{*}x, A^{*}xrangle =langle AA^{*}x, xrangle =langle A^{*}Ax, xrangle ==langle Ax, Axrangle =|Ax|^{2}$ which shows that for any $x$ in the null space of $A$ we also have $A^{*}x=0$. Now let $x$ be in the null space of $A$ and consider any vector $Ay$ in the range of $A$. We have $langle Ay, xrangle =langle y, A^{*}xrangle =langle y, 0rangle =0$.
$endgroup$
add a comment |
$begingroup$
I will use the language of linear transformations. We have $|A^{*}x|^{2}=langle A^{*}x, A^{*}xrangle =langle AA^{*}x, xrangle =langle A^{*}Ax, xrangle ==langle Ax, Axrangle =|Ax|^{2}$ which shows that for any $x$ in the null space of $A$ we also have $A^{*}x=0$. Now let $x$ be in the null space of $A$ and consider any vector $Ay$ in the range of $A$. We have $langle Ay, xrangle =langle y, A^{*}xrangle =langle y, 0rangle =0$.
$endgroup$
add a comment |
$begingroup$
I will use the language of linear transformations. We have $|A^{*}x|^{2}=langle A^{*}x, A^{*}xrangle =langle AA^{*}x, xrangle =langle A^{*}Ax, xrangle ==langle Ax, Axrangle =|Ax|^{2}$ which shows that for any $x$ in the null space of $A$ we also have $A^{*}x=0$. Now let $x$ be in the null space of $A$ and consider any vector $Ay$ in the range of $A$. We have $langle Ay, xrangle =langle y, A^{*}xrangle =langle y, 0rangle =0$.
$endgroup$
I will use the language of linear transformations. We have $|A^{*}x|^{2}=langle A^{*}x, A^{*}xrangle =langle AA^{*}x, xrangle =langle A^{*}Ax, xrangle ==langle Ax, Axrangle =|Ax|^{2}$ which shows that for any $x$ in the null space of $A$ we also have $A^{*}x=0$. Now let $x$ be in the null space of $A$ and consider any vector $Ay$ in the range of $A$. We have $langle Ay, xrangle =langle y, A^{*}xrangle =langle y, 0rangle =0$.
answered Nov 27 '18 at 6:08
Kavi Rama MurthyKavi Rama Murthy
55.9k42158
55.9k42158
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015324%2fprove-normal-matrices-are-rpn-range-perpendicular-to-null-space-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown