Is it valid to say that $cos^3(x^{4/3})=cos(x^4)$?












-1












$begingroup$


As the title says, is it valid to insert the power of the cosine to its angle?
Edit : Is it valid when x is very small ?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    No. They are close near $x=0$ though.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:12










  • $begingroup$
    Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
    $endgroup$
    – Akash Roy
    Nov 24 '18 at 3:16










  • $begingroup$
    Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
    $endgroup$
    – littleO
    Nov 24 '18 at 3:27










  • $begingroup$
    When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 3:43


















-1












$begingroup$


As the title says, is it valid to insert the power of the cosine to its angle?
Edit : Is it valid when x is very small ?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    No. They are close near $x=0$ though.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:12










  • $begingroup$
    Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
    $endgroup$
    – Akash Roy
    Nov 24 '18 at 3:16










  • $begingroup$
    Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
    $endgroup$
    – littleO
    Nov 24 '18 at 3:27










  • $begingroup$
    When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 3:43
















-1












-1








-1





$begingroup$


As the title says, is it valid to insert the power of the cosine to its angle?
Edit : Is it valid when x is very small ?










share|cite|improve this question











$endgroup$




As the title says, is it valid to insert the power of the cosine to its angle?
Edit : Is it valid when x is very small ?







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 24 '18 at 3:17







John adams

















asked Nov 24 '18 at 3:06









John adamsJohn adams

226




226








  • 1




    $begingroup$
    No. They are close near $x=0$ though.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:12










  • $begingroup$
    Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
    $endgroup$
    – Akash Roy
    Nov 24 '18 at 3:16










  • $begingroup$
    Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
    $endgroup$
    – littleO
    Nov 24 '18 at 3:27










  • $begingroup$
    When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 3:43
















  • 1




    $begingroup$
    No. They are close near $x=0$ though.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:12










  • $begingroup$
    Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
    $endgroup$
    – Akash Roy
    Nov 24 '18 at 3:16










  • $begingroup$
    Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
    $endgroup$
    – littleO
    Nov 24 '18 at 3:27










  • $begingroup$
    When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
    $endgroup$
    – Clement C.
    Nov 24 '18 at 3:43










1




1




$begingroup$
No. They are close near $x=0$ though.
$endgroup$
– user587192
Nov 24 '18 at 3:12




$begingroup$
No. They are close near $x=0$ though.
$endgroup$
– user587192
Nov 24 '18 at 3:12












$begingroup$
Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
$endgroup$
– Akash Roy
Nov 24 '18 at 3:16




$begingroup$
Had it been $cos(x^{frac{4}{3}})^{3}$ then you could have
$endgroup$
– Akash Roy
Nov 24 '18 at 3:16












$begingroup$
Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
$endgroup$
– littleO
Nov 24 '18 at 3:27




$begingroup$
Notice that $cos^3(y) neq cos(y^3)$, so there's no reason to expect the equation in the question to be true.
$endgroup$
– littleO
Nov 24 '18 at 3:27












$begingroup$
When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
$endgroup$
– Clement C.
Nov 24 '18 at 3:43






$begingroup$
When $xto 0$, $$cos^3(x^{4/3})=1-frac{3}{2}x^{8/3} + o(x^4)$$ while $$cos(x^4) = 1-frac{1}{2}x^8 + o(x^8)$$ so the first non-constant terms do not even closely match up.
$endgroup$
– Clement C.
Nov 24 '18 at 3:43












2 Answers
2






active

oldest

votes


















2












$begingroup$

For $x = pi^{3/4}$, $cos^{3}(x^{4/3}) = cos^{3}(pi) = -1$. However, $cos(pi^{4})neq -1$, since $pi^{4}$ can't be a rational multiple of $pi$ (since $pi$ is a transcendental number!).






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Although it's pretty much true, I don't think that that's the most helpful approach.
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:25










  • $begingroup$
    @rafa11111 I just want to show the simple counter example that just arose in my head :)
    $endgroup$
    – Seewoo Lee
    Nov 24 '18 at 3:26










  • $begingroup$
    Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:29



















0












$begingroup$

Although
$$
(x^{4/3})^3 = x^4,
$$

one does not have
$$
[f(x^{4/3})]^3=f(x^4)
$$

in general.



enter image description here




For your added question "Is it valid when $x$ is very small?":




I assume that you mean when $|x|$ is very small.



No. If these two functions are identical near $x=0$, then they must have the same Taylor expansion. But it is not difficult to see by comparing a few terms that they don't have the same Taylor expansion near $x=0$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So this means that this is valid when x is very small ?
    $endgroup$
    – John adams
    Nov 24 '18 at 3:21






  • 1




    $begingroup$
    @Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:41











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011125%2fis-it-valid-to-say-that-cos3x4-3-cosx4%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

For $x = pi^{3/4}$, $cos^{3}(x^{4/3}) = cos^{3}(pi) = -1$. However, $cos(pi^{4})neq -1$, since $pi^{4}$ can't be a rational multiple of $pi$ (since $pi$ is a transcendental number!).






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Although it's pretty much true, I don't think that that's the most helpful approach.
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:25










  • $begingroup$
    @rafa11111 I just want to show the simple counter example that just arose in my head :)
    $endgroup$
    – Seewoo Lee
    Nov 24 '18 at 3:26










  • $begingroup$
    Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:29
















2












$begingroup$

For $x = pi^{3/4}$, $cos^{3}(x^{4/3}) = cos^{3}(pi) = -1$. However, $cos(pi^{4})neq -1$, since $pi^{4}$ can't be a rational multiple of $pi$ (since $pi$ is a transcendental number!).






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Although it's pretty much true, I don't think that that's the most helpful approach.
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:25










  • $begingroup$
    @rafa11111 I just want to show the simple counter example that just arose in my head :)
    $endgroup$
    – Seewoo Lee
    Nov 24 '18 at 3:26










  • $begingroup$
    Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:29














2












2








2





$begingroup$

For $x = pi^{3/4}$, $cos^{3}(x^{4/3}) = cos^{3}(pi) = -1$. However, $cos(pi^{4})neq -1$, since $pi^{4}$ can't be a rational multiple of $pi$ (since $pi$ is a transcendental number!).






share|cite|improve this answer









$endgroup$



For $x = pi^{3/4}$, $cos^{3}(x^{4/3}) = cos^{3}(pi) = -1$. However, $cos(pi^{4})neq -1$, since $pi^{4}$ can't be a rational multiple of $pi$ (since $pi$ is a transcendental number!).







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 24 '18 at 3:15









Seewoo LeeSeewoo Lee

6,267826




6,267826












  • $begingroup$
    Although it's pretty much true, I don't think that that's the most helpful approach.
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:25










  • $begingroup$
    @rafa11111 I just want to show the simple counter example that just arose in my head :)
    $endgroup$
    – Seewoo Lee
    Nov 24 '18 at 3:26










  • $begingroup$
    Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:29


















  • $begingroup$
    Although it's pretty much true, I don't think that that's the most helpful approach.
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:25










  • $begingroup$
    @rafa11111 I just want to show the simple counter example that just arose in my head :)
    $endgroup$
    – Seewoo Lee
    Nov 24 '18 at 3:26










  • $begingroup$
    Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
    $endgroup$
    – rafa11111
    Nov 24 '18 at 3:29
















$begingroup$
Although it's pretty much true, I don't think that that's the most helpful approach.
$endgroup$
– rafa11111
Nov 24 '18 at 3:25




$begingroup$
Although it's pretty much true, I don't think that that's the most helpful approach.
$endgroup$
– rafa11111
Nov 24 '18 at 3:25












$begingroup$
@rafa11111 I just want to show the simple counter example that just arose in my head :)
$endgroup$
– Seewoo Lee
Nov 24 '18 at 3:26




$begingroup$
@rafa11111 I just want to show the simple counter example that just arose in my head :)
$endgroup$
– Seewoo Lee
Nov 24 '18 at 3:26












$begingroup$
Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
$endgroup$
– rafa11111
Nov 24 '18 at 3:29




$begingroup$
Yes, of course! I just wanted to point out that, IMHO, that's not exactly an answer...
$endgroup$
– rafa11111
Nov 24 '18 at 3:29











0












$begingroup$

Although
$$
(x^{4/3})^3 = x^4,
$$

one does not have
$$
[f(x^{4/3})]^3=f(x^4)
$$

in general.



enter image description here




For your added question "Is it valid when $x$ is very small?":




I assume that you mean when $|x|$ is very small.



No. If these two functions are identical near $x=0$, then they must have the same Taylor expansion. But it is not difficult to see by comparing a few terms that they don't have the same Taylor expansion near $x=0$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So this means that this is valid when x is very small ?
    $endgroup$
    – John adams
    Nov 24 '18 at 3:21






  • 1




    $begingroup$
    @Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:41
















0












$begingroup$

Although
$$
(x^{4/3})^3 = x^4,
$$

one does not have
$$
[f(x^{4/3})]^3=f(x^4)
$$

in general.



enter image description here




For your added question "Is it valid when $x$ is very small?":




I assume that you mean when $|x|$ is very small.



No. If these two functions are identical near $x=0$, then they must have the same Taylor expansion. But it is not difficult to see by comparing a few terms that they don't have the same Taylor expansion near $x=0$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    So this means that this is valid when x is very small ?
    $endgroup$
    – John adams
    Nov 24 '18 at 3:21






  • 1




    $begingroup$
    @Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:41














0












0








0





$begingroup$

Although
$$
(x^{4/3})^3 = x^4,
$$

one does not have
$$
[f(x^{4/3})]^3=f(x^4)
$$

in general.



enter image description here




For your added question "Is it valid when $x$ is very small?":




I assume that you mean when $|x|$ is very small.



No. If these two functions are identical near $x=0$, then they must have the same Taylor expansion. But it is not difficult to see by comparing a few terms that they don't have the same Taylor expansion near $x=0$.






share|cite|improve this answer











$endgroup$



Although
$$
(x^{4/3})^3 = x^4,
$$

one does not have
$$
[f(x^{4/3})]^3=f(x^4)
$$

in general.



enter image description here




For your added question "Is it valid when $x$ is very small?":




I assume that you mean when $|x|$ is very small.



No. If these two functions are identical near $x=0$, then they must have the same Taylor expansion. But it is not difficult to see by comparing a few terms that they don't have the same Taylor expansion near $x=0$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 24 '18 at 4:24

























answered Nov 24 '18 at 3:19









user587192user587192

1,757215




1,757215












  • $begingroup$
    So this means that this is valid when x is very small ?
    $endgroup$
    – John adams
    Nov 24 '18 at 3:21






  • 1




    $begingroup$
    @Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:41


















  • $begingroup$
    So this means that this is valid when x is very small ?
    $endgroup$
    – John adams
    Nov 24 '18 at 3:21






  • 1




    $begingroup$
    @Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
    $endgroup$
    – user587192
    Nov 24 '18 at 3:41
















$begingroup$
So this means that this is valid when x is very small ?
$endgroup$
– John adams
Nov 24 '18 at 3:21




$begingroup$
So this means that this is valid when x is very small ?
$endgroup$
– John adams
Nov 24 '18 at 3:21




1




1




$begingroup$
@Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
$endgroup$
– user587192
Nov 24 '18 at 3:41




$begingroup$
@Johnadams: "close" does not necessarily mean they are "identical". But one can tell that they are identical at $x=0$, of course.
$endgroup$
– user587192
Nov 24 '18 at 3:41


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011125%2fis-it-valid-to-say-that-cos3x4-3-cosx4%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?