How to arrive at unique factorization through the limit given naturality compatibility conditions?












1












$begingroup$


If $alpha : I to C$ from a small category to any category $C$. Define a functor $limlimits_{rightarrow} alpha : X mapsto limlimits_{leftarrow} text{Hom}_C(alpha, X)$ from $C^{op}$ to $text{Set}$.



If $limlimits_{rightarrow} alpha$ is representable then let $Y$ be a representative object. Then we have $text{Hom}_{C}(Y, Y) simeq limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ by definition of representable. So that to $text{id}_Y$ is a associated a natural map $rho$ in $limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ such that $rho_j circ alpha(s) = rho_i$ for any $s : i to j$ in $I$.



Suppose that we are given another family of morphism $f_i : alpha(i) to X$ in $C$ such that $f_j circ alpha(s) = f_i$. I'm seeing how there exists a unique map $g$ in $text{Hom}_C(Y, X)$ but I'm not seeing how $f_i = gcirc rho_i$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
    $endgroup$
    – Oskar
    Nov 24 '18 at 13:03
















1












$begingroup$


If $alpha : I to C$ from a small category to any category $C$. Define a functor $limlimits_{rightarrow} alpha : X mapsto limlimits_{leftarrow} text{Hom}_C(alpha, X)$ from $C^{op}$ to $text{Set}$.



If $limlimits_{rightarrow} alpha$ is representable then let $Y$ be a representative object. Then we have $text{Hom}_{C}(Y, Y) simeq limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ by definition of representable. So that to $text{id}_Y$ is a associated a natural map $rho$ in $limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ such that $rho_j circ alpha(s) = rho_i$ for any $s : i to j$ in $I$.



Suppose that we are given another family of morphism $f_i : alpha(i) to X$ in $C$ such that $f_j circ alpha(s) = f_i$. I'm seeing how there exists a unique map $g$ in $text{Hom}_C(Y, X)$ but I'm not seeing how $f_i = gcirc rho_i$.










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
    $endgroup$
    – Oskar
    Nov 24 '18 at 13:03














1












1








1





$begingroup$


If $alpha : I to C$ from a small category to any category $C$. Define a functor $limlimits_{rightarrow} alpha : X mapsto limlimits_{leftarrow} text{Hom}_C(alpha, X)$ from $C^{op}$ to $text{Set}$.



If $limlimits_{rightarrow} alpha$ is representable then let $Y$ be a representative object. Then we have $text{Hom}_{C}(Y, Y) simeq limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ by definition of representable. So that to $text{id}_Y$ is a associated a natural map $rho$ in $limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ such that $rho_j circ alpha(s) = rho_i$ for any $s : i to j$ in $I$.



Suppose that we are given another family of morphism $f_i : alpha(i) to X$ in $C$ such that $f_j circ alpha(s) = f_i$. I'm seeing how there exists a unique map $g$ in $text{Hom}_C(Y, X)$ but I'm not seeing how $f_i = gcirc rho_i$.










share|cite|improve this question









$endgroup$




If $alpha : I to C$ from a small category to any category $C$. Define a functor $limlimits_{rightarrow} alpha : X mapsto limlimits_{leftarrow} text{Hom}_C(alpha, X)$ from $C^{op}$ to $text{Set}$.



If $limlimits_{rightarrow} alpha$ is representable then let $Y$ be a representative object. Then we have $text{Hom}_{C}(Y, Y) simeq limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ by definition of representable. So that to $text{id}_Y$ is a associated a natural map $rho$ in $limlimits_{leftarrow} text{Hom}_C(alpha, Y)$ such that $rho_j circ alpha(s) = rho_i$ for any $s : i to j$ in $I$.



Suppose that we are given another family of morphism $f_i : alpha(i) to X$ in $C$ such that $f_j circ alpha(s) = f_i$. I'm seeing how there exists a unique map $g$ in $text{Hom}_C(Y, X)$ but I'm not seeing how $f_i = gcirc rho_i$.







category-theory limits-colimits functors representable-functor natural-transformations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 24 '18 at 2:48









Roll up and smoke AdjointRoll up and smoke Adjoint

9,09552458




9,09552458








  • 1




    $begingroup$
    The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
    $endgroup$
    – Oskar
    Nov 24 '18 at 13:03














  • 1




    $begingroup$
    The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
    $endgroup$
    – Oskar
    Nov 24 '18 at 13:03








1




1




$begingroup$
The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
$endgroup$
– Oskar
Nov 24 '18 at 13:03




$begingroup$
The functor $varprojlimtext{Hom}_C(alpha,X)$ is from $C$ to $mathbf{Set}$, not from $C^{op}$.
$endgroup$
– Oskar
Nov 24 '18 at 13:03










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011117%2fhow-to-arrive-at-unique-factorization-through-the-limit-given-naturality-compati%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3011117%2fhow-to-arrive-at-unique-factorization-through-the-limit-given-naturality-compati%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?