How to prove that $E(Y|D=1)=E(DY)/E(D)$
up vote
1
down vote
favorite
How to prove that
$$E(Y|D=1)=E(DY)/E(D)$$
and
$$E(Y|X,D=1)=E(DY|X)/E(D|X),$$
where $D$ is a binary variable and takes value of 0 and 1.
probability probability-theory statistics probability-distributions conditional-expectation
add a comment |
up vote
1
down vote
favorite
How to prove that
$$E(Y|D=1)=E(DY)/E(D)$$
and
$$E(Y|X,D=1)=E(DY|X)/E(D|X),$$
where $D$ is a binary variable and takes value of 0 and 1.
probability probability-theory statistics probability-distributions conditional-expectation
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
1
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
How to prove that
$$E(Y|D=1)=E(DY)/E(D)$$
and
$$E(Y|X,D=1)=E(DY|X)/E(D|X),$$
where $D$ is a binary variable and takes value of 0 and 1.
probability probability-theory statistics probability-distributions conditional-expectation
How to prove that
$$E(Y|D=1)=E(DY)/E(D)$$
and
$$E(Y|X,D=1)=E(DY|X)/E(D|X),$$
where $D$ is a binary variable and takes value of 0 and 1.
probability probability-theory statistics probability-distributions conditional-expectation
probability probability-theory statistics probability-distributions conditional-expectation
edited Nov 20 at 4:28
asked Nov 19 at 17:05
J.Mike
313110
313110
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
1
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26
add a comment |
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
1
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
1
1
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26
add a comment |
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
First observe that $$mathbb E[D]=1cdot P(D=1)+0cdot P(D=0)=P(D=1)tag{1}$$
So, begin{align}mathbb E[YD]&=mathbb E[Ycdot 1mid D=1]P(D=1)+mathbb E[Ycdot 0mid D=0]P(D=0)\&overset{(1)}=mathbb E[Ymid D=1]mathbb E[D]+0end{align} and the result follows by rearranging terms and assuming that $P(D=1)>0$. Can you do the same for the $X$ part?
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
add a comment |
up vote
1
down vote
The unconditional case is shown as above. For the conditional case, first observe that
$$mathbb E[D|X]=1cdot P(D=1|X)+0cdot P(D=0|X)=P(D=1|X)tag{1}$$
So,
begin{align}mathbb E[YD|X]&=mathbb E[YD|X,D=1]cdot P(D=1|X)+mathbb E[YD|X,D=0]cdot P(D=0|X)\&overset{(1)}=mathbb E[Y| X, D=1]cdotmathbb E[D|X]end{align}
and the conditional equation follows by rearranging terms and assuming that $P(D=1|X)neq0$.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005188%2fhow-to-prove-that-eyd-1-edy-ed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
First observe that $$mathbb E[D]=1cdot P(D=1)+0cdot P(D=0)=P(D=1)tag{1}$$
So, begin{align}mathbb E[YD]&=mathbb E[Ycdot 1mid D=1]P(D=1)+mathbb E[Ycdot 0mid D=0]P(D=0)\&overset{(1)}=mathbb E[Ymid D=1]mathbb E[D]+0end{align} and the result follows by rearranging terms and assuming that $P(D=1)>0$. Can you do the same for the $X$ part?
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
add a comment |
up vote
1
down vote
accepted
First observe that $$mathbb E[D]=1cdot P(D=1)+0cdot P(D=0)=P(D=1)tag{1}$$
So, begin{align}mathbb E[YD]&=mathbb E[Ycdot 1mid D=1]P(D=1)+mathbb E[Ycdot 0mid D=0]P(D=0)\&overset{(1)}=mathbb E[Ymid D=1]mathbb E[D]+0end{align} and the result follows by rearranging terms and assuming that $P(D=1)>0$. Can you do the same for the $X$ part?
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
First observe that $$mathbb E[D]=1cdot P(D=1)+0cdot P(D=0)=P(D=1)tag{1}$$
So, begin{align}mathbb E[YD]&=mathbb E[Ycdot 1mid D=1]P(D=1)+mathbb E[Ycdot 0mid D=0]P(D=0)\&overset{(1)}=mathbb E[Ymid D=1]mathbb E[D]+0end{align} and the result follows by rearranging terms and assuming that $P(D=1)>0$. Can you do the same for the $X$ part?
First observe that $$mathbb E[D]=1cdot P(D=1)+0cdot P(D=0)=P(D=1)tag{1}$$
So, begin{align}mathbb E[YD]&=mathbb E[Ycdot 1mid D=1]P(D=1)+mathbb E[Ycdot 0mid D=0]P(D=0)\&overset{(1)}=mathbb E[Ymid D=1]mathbb E[D]+0end{align} and the result follows by rearranging terms and assuming that $P(D=1)>0$. Can you do the same for the $X$ part?
answered Nov 20 at 4:36
Jimmy R.
33k42157
33k42157
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
add a comment |
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
1
1
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
Thank you very much for your kind help. Following your solution, I prove the conditional case as below.
– J.Mike
Nov 20 at 5:03
add a comment |
up vote
1
down vote
The unconditional case is shown as above. For the conditional case, first observe that
$$mathbb E[D|X]=1cdot P(D=1|X)+0cdot P(D=0|X)=P(D=1|X)tag{1}$$
So,
begin{align}mathbb E[YD|X]&=mathbb E[YD|X,D=1]cdot P(D=1|X)+mathbb E[YD|X,D=0]cdot P(D=0|X)\&overset{(1)}=mathbb E[Y| X, D=1]cdotmathbb E[D|X]end{align}
and the conditional equation follows by rearranging terms and assuming that $P(D=1|X)neq0$.
add a comment |
up vote
1
down vote
The unconditional case is shown as above. For the conditional case, first observe that
$$mathbb E[D|X]=1cdot P(D=1|X)+0cdot P(D=0|X)=P(D=1|X)tag{1}$$
So,
begin{align}mathbb E[YD|X]&=mathbb E[YD|X,D=1]cdot P(D=1|X)+mathbb E[YD|X,D=0]cdot P(D=0|X)\&overset{(1)}=mathbb E[Y| X, D=1]cdotmathbb E[D|X]end{align}
and the conditional equation follows by rearranging terms and assuming that $P(D=1|X)neq0$.
add a comment |
up vote
1
down vote
up vote
1
down vote
The unconditional case is shown as above. For the conditional case, first observe that
$$mathbb E[D|X]=1cdot P(D=1|X)+0cdot P(D=0|X)=P(D=1|X)tag{1}$$
So,
begin{align}mathbb E[YD|X]&=mathbb E[YD|X,D=1]cdot P(D=1|X)+mathbb E[YD|X,D=0]cdot P(D=0|X)\&overset{(1)}=mathbb E[Y| X, D=1]cdotmathbb E[D|X]end{align}
and the conditional equation follows by rearranging terms and assuming that $P(D=1|X)neq0$.
The unconditional case is shown as above. For the conditional case, first observe that
$$mathbb E[D|X]=1cdot P(D=1|X)+0cdot P(D=0|X)=P(D=1|X)tag{1}$$
So,
begin{align}mathbb E[YD|X]&=mathbb E[YD|X,D=1]cdot P(D=1|X)+mathbb E[YD|X,D=0]cdot P(D=0|X)\&overset{(1)}=mathbb E[Y| X, D=1]cdotmathbb E[D|X]end{align}
and the conditional equation follows by rearranging terms and assuming that $P(D=1|X)neq0$.
edited Nov 20 at 5:05
answered Nov 20 at 4:59
J.Mike
313110
313110
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3005188%2fhow-to-prove-that-eyd-1-edy-ed%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Have you tried Bayes' Theorem? That's the first thing that pops to mind
– kcborys
Nov 19 at 17:07
1
This is not true, in general. Say, $Y=D$, $E(D|D=1)=1$, and the r.h.s. $E(D^2)/E(D)$ need not to be $1$.
– NCh
Nov 20 at 1:56
Thank you for your comment. Sorry, I forgot to give the definition of $D$. $D$ is a binary variable which takes value of 0 and 1. So $D^2=D$, then $E(D^2)/E(D)=E(D)/E(D)=1$
– J.Mike
Nov 20 at 4:26