Formula to compute partial sums of the Basel problem?
$begingroup$
Question
What is the taylor expansion of $Gamma(n+1)$ of the first $4$ terms? Are the results below correct?
I thought of an interesting way to calculate the following quantity:
$$ prod_{(s-1)^2> m neq I^2} (s^2 -m) =frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} $$
Where $m$ is an integer which is not a square. Further using this I realised I could calculate partial sums of the Basel problem:
$epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
Background and Motivation
I was pondering about the following:
$$ frac{(s^2)!}{(s!)^2} = frac{s^2cdot(s^2-1)cdot(s^2-2)cdots(s+1)}{s!} $$
Now, we can do some further cancellation using the identity $s^2 - r^2= (s-r)(s+r)$:
$$ frac{(s^2)!}{(s!)^2} = {scdot(s+1)cdot(s^2-2)cdots(s+1)} = s(s+1)^2(s+2)^2cdots(s^2 -2)(s^2-3)dots $$
Hence, we can the above expression properly:
$$ frac{(s^2)!}{(s!)^2} = s (s^2 -(s-1)^2))prod_{1 leq k leq s-2} (s+k)^2 prod_{(s-1)^2> m neq I^2 } (s^2 -m)$$
Where $I$ is an arbitrary integer and now re-writing the above expression:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{(s-1)^2> m neq I^2} (s^2 -m)$$
Now since there are $(s-1)^2 - (s-1) = s^2 -3s +2$ non-square numbers less than $(s-1)^2$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{i=1}^{s^2 -3s +2} (s^2 -m_i)$$
Where $m_i$ is the $i$'th non-square number. Taking $m_i$ common from the R.H.S using $prod_{i} m_i = frac{(s-1)^2!}{(s-1)!^2}$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = frac{(s-1)^2!}{(s-1)!^2}prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} - 1) $$
Expanding out the R.H.S from smallest term to largest:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 - s^2(sum_{i=1}^{s^2 -3s +2} frac{1}{m_i}) + dots + prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} ) $$
Now we use the identity:
$$sum_{i}^{s^2 -3s +2} frac{1}{m_i} = sum_r^{(s-1)^2} frac{1}{r} - sum_{r=1}^{s-1} frac{1}{r^2} = gamma + 2ln(s-1) +O(frac{1}{s^2}) - B(s-1)$$
where $B(s-1) = sum_{r=1}^{s-1} frac{1}{r^2}$. Now using the above as a substitution:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 + O(1)- s^2 ( gamma + 2ln(s-1) - B(s-1) ) + dots $$
Now let us put $s to epsilon$ where $epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
linear-algebra sequences-and-series number-theory proof-verification square-numbers
$endgroup$
add a comment |
$begingroup$
Question
What is the taylor expansion of $Gamma(n+1)$ of the first $4$ terms? Are the results below correct?
I thought of an interesting way to calculate the following quantity:
$$ prod_{(s-1)^2> m neq I^2} (s^2 -m) =frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} $$
Where $m$ is an integer which is not a square. Further using this I realised I could calculate partial sums of the Basel problem:
$epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
Background and Motivation
I was pondering about the following:
$$ frac{(s^2)!}{(s!)^2} = frac{s^2cdot(s^2-1)cdot(s^2-2)cdots(s+1)}{s!} $$
Now, we can do some further cancellation using the identity $s^2 - r^2= (s-r)(s+r)$:
$$ frac{(s^2)!}{(s!)^2} = {scdot(s+1)cdot(s^2-2)cdots(s+1)} = s(s+1)^2(s+2)^2cdots(s^2 -2)(s^2-3)dots $$
Hence, we can the above expression properly:
$$ frac{(s^2)!}{(s!)^2} = s (s^2 -(s-1)^2))prod_{1 leq k leq s-2} (s+k)^2 prod_{(s-1)^2> m neq I^2 } (s^2 -m)$$
Where $I$ is an arbitrary integer and now re-writing the above expression:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{(s-1)^2> m neq I^2} (s^2 -m)$$
Now since there are $(s-1)^2 - (s-1) = s^2 -3s +2$ non-square numbers less than $(s-1)^2$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{i=1}^{s^2 -3s +2} (s^2 -m_i)$$
Where $m_i$ is the $i$'th non-square number. Taking $m_i$ common from the R.H.S using $prod_{i} m_i = frac{(s-1)^2!}{(s-1)!^2}$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = frac{(s-1)^2!}{(s-1)!^2}prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} - 1) $$
Expanding out the R.H.S from smallest term to largest:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 - s^2(sum_{i=1}^{s^2 -3s +2} frac{1}{m_i}) + dots + prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} ) $$
Now we use the identity:
$$sum_{i}^{s^2 -3s +2} frac{1}{m_i} = sum_r^{(s-1)^2} frac{1}{r} - sum_{r=1}^{s-1} frac{1}{r^2} = gamma + 2ln(s-1) +O(frac{1}{s^2}) - B(s-1)$$
where $B(s-1) = sum_{r=1}^{s-1} frac{1}{r^2}$. Now using the above as a substitution:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 + O(1)- s^2 ( gamma + 2ln(s-1) - B(s-1) ) + dots $$
Now let us put $s to epsilon$ where $epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
linear-algebra sequences-and-series number-theory proof-verification square-numbers
$endgroup$
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35
add a comment |
$begingroup$
Question
What is the taylor expansion of $Gamma(n+1)$ of the first $4$ terms? Are the results below correct?
I thought of an interesting way to calculate the following quantity:
$$ prod_{(s-1)^2> m neq I^2} (s^2 -m) =frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} $$
Where $m$ is an integer which is not a square. Further using this I realised I could calculate partial sums of the Basel problem:
$epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
Background and Motivation
I was pondering about the following:
$$ frac{(s^2)!}{(s!)^2} = frac{s^2cdot(s^2-1)cdot(s^2-2)cdots(s+1)}{s!} $$
Now, we can do some further cancellation using the identity $s^2 - r^2= (s-r)(s+r)$:
$$ frac{(s^2)!}{(s!)^2} = {scdot(s+1)cdot(s^2-2)cdots(s+1)} = s(s+1)^2(s+2)^2cdots(s^2 -2)(s^2-3)dots $$
Hence, we can the above expression properly:
$$ frac{(s^2)!}{(s!)^2} = s (s^2 -(s-1)^2))prod_{1 leq k leq s-2} (s+k)^2 prod_{(s-1)^2> m neq I^2 } (s^2 -m)$$
Where $I$ is an arbitrary integer and now re-writing the above expression:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{(s-1)^2> m neq I^2} (s^2 -m)$$
Now since there are $(s-1)^2 - (s-1) = s^2 -3s +2$ non-square numbers less than $(s-1)^2$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{i=1}^{s^2 -3s +2} (s^2 -m_i)$$
Where $m_i$ is the $i$'th non-square number. Taking $m_i$ common from the R.H.S using $prod_{i} m_i = frac{(s-1)^2!}{(s-1)!^2}$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = frac{(s-1)^2!}{(s-1)!^2}prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} - 1) $$
Expanding out the R.H.S from smallest term to largest:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 - s^2(sum_{i=1}^{s^2 -3s +2} frac{1}{m_i}) + dots + prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} ) $$
Now we use the identity:
$$sum_{i}^{s^2 -3s +2} frac{1}{m_i} = sum_r^{(s-1)^2} frac{1}{r} - sum_{r=1}^{s-1} frac{1}{r^2} = gamma + 2ln(s-1) +O(frac{1}{s^2}) - B(s-1)$$
where $B(s-1) = sum_{r=1}^{s-1} frac{1}{r^2}$. Now using the above as a substitution:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 + O(1)- s^2 ( gamma + 2ln(s-1) - B(s-1) ) + dots $$
Now let us put $s to epsilon$ where $epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
linear-algebra sequences-and-series number-theory proof-verification square-numbers
$endgroup$
Question
What is the taylor expansion of $Gamma(n+1)$ of the first $4$ terms? Are the results below correct?
I thought of an interesting way to calculate the following quantity:
$$ prod_{(s-1)^2> m neq I^2} (s^2 -m) =frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} $$
Where $m$ is an integer which is not a square. Further using this I realised I could calculate partial sums of the Basel problem:
$epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
Background and Motivation
I was pondering about the following:
$$ frac{(s^2)!}{(s!)^2} = frac{s^2cdot(s^2-1)cdot(s^2-2)cdots(s+1)}{s!} $$
Now, we can do some further cancellation using the identity $s^2 - r^2= (s-r)(s+r)$:
$$ frac{(s^2)!}{(s!)^2} = {scdot(s+1)cdot(s^2-2)cdots(s+1)} = s(s+1)^2(s+2)^2cdots(s^2 -2)(s^2-3)dots $$
Hence, we can the above expression properly:
$$ frac{(s^2)!}{(s!)^2} = s (s^2 -(s-1)^2))prod_{1 leq k leq s-2} (s+k)^2 prod_{(s-1)^2> m neq I^2 } (s^2 -m)$$
Where $I$ is an arbitrary integer and now re-writing the above expression:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{(s-1)^2> m neq I^2} (s^2 -m)$$
Now since there are $(s-1)^2 - (s-1) = s^2 -3s +2$ non-square numbers less than $(s-1)^2$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = prod_{i=1}^{s^2 -3s +2} (s^2 -m_i)$$
Where $m_i$ is the $i$'th non-square number. Taking $m_i$ common from the R.H.S using $prod_{i} m_i = frac{(s-1)^2!}{(s-1)!^2}$:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} = frac{(s-1)^2!}{(s-1)!^2}prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} - 1) $$
Expanding out the R.H.S from smallest term to largest:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 - s^2(sum_{i=1}^{s^2 -3s +2} frac{1}{m_i}) + dots + prod_{i=1}^{s^2 -3s +2} (frac{s^2}{m_i} ) $$
Now we use the identity:
$$sum_{i}^{s^2 -3s +2} frac{1}{m_i} = sum_r^{(s-1)^2} frac{1}{r} - sum_{r=1}^{s-1} frac{1}{r^2} = gamma + 2ln(s-1) +O(frac{1}{s^2}) - B(s-1)$$
where $B(s-1) = sum_{r=1}^{s-1} frac{1}{r^2}$. Now using the above as a substitution:
$$ frac{(s^2)!}{s ((2s-2)!)^2(2s-1 )} frac{(s-1)!^2}{(s-1)^2!} = 1 + O(1)- s^2 ( gamma + 2ln(s-1) - B(s-1) ) + dots $$
Now let us put $s to epsilon$ where $epsilon$ is a nil potent matrix such that $epsilon^4 = 0$. Hence, the expression becomes:
$$ frac{(epsilon^2)!}{s ((2epsilon-2)!)^2(2epsilon-1 )} frac{(epsilon-1)!^2}{(epsilon-1)^2!} = 1 + O(1)- epsilon^2 ( gamma + 2ln(epsilon-1) - B(epsilon-1) ) $$
Note the $1$ used above is actually the identity. Using this it should be possible to find $B(epsilon)$'s first two terms.
linear-algebra sequences-and-series number-theory proof-verification square-numbers
linear-algebra sequences-and-series number-theory proof-verification square-numbers
edited Nov 29 '18 at 15:29
More Anonymous
asked Nov 27 '18 at 23:18
More AnonymousMore Anonymous
37019
37019
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35
add a comment |
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016468%2fformula-to-compute-partial-sums-of-the-basel-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3016468%2fformula-to-compute-partial-sums-of-the-basel-problem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Reason for downvote?
$endgroup$
– More Anonymous
Nov 28 '18 at 14:33
$begingroup$
The first product is correct. Note that $O(s^{-1})+O(s^{-1})=O(s^{-1})$. In your second formula (if it is correct), the last term before $O(s^{-1})$ doesn't add any information.
$endgroup$
– Jean-Claude Arbaut
Nov 28 '18 at 20:09
$begingroup$
I've edited it ... the new term replacing it should make more sense now?
$endgroup$
– More Anonymous
Nov 28 '18 at 21:57
$begingroup$
Wait ...even the new term doesn't
$endgroup$
– More Anonymous
Nov 28 '18 at 23:35