How to prove ~($forall$x Q(x)) is logically equivalent to $exists$x(~Q(x)) using natural deduction for first...












0














I am thinking of assuming Q(x1) and then deriving to reach to a contradiction but I have not been able to do so.










share|cite|improve this question
























  • Could you give us some more background? For instance, in my book, this is the definition of $forall$.
    – Arthur
    Nov 21 '18 at 12:43












  • here $forall$ stand for "for all" x that belong to domain of discourse.
    – user10143594
    Nov 21 '18 at 12:51
















0














I am thinking of assuming Q(x1) and then deriving to reach to a contradiction but I have not been able to do so.










share|cite|improve this question
























  • Could you give us some more background? For instance, in my book, this is the definition of $forall$.
    – Arthur
    Nov 21 '18 at 12:43












  • here $forall$ stand for "for all" x that belong to domain of discourse.
    – user10143594
    Nov 21 '18 at 12:51














0












0








0







I am thinking of assuming Q(x1) and then deriving to reach to a contradiction but I have not been able to do so.










share|cite|improve this question















I am thinking of assuming Q(x1) and then deriving to reach to a contradiction but I have not been able to do so.







logic first-order-logic natural-deduction






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 21 '18 at 12:45









Mauro ALLEGRANZA

64.4k448112




64.4k448112










asked Nov 21 '18 at 12:41









user10143594

103




103












  • Could you give us some more background? For instance, in my book, this is the definition of $forall$.
    – Arthur
    Nov 21 '18 at 12:43












  • here $forall$ stand for "for all" x that belong to domain of discourse.
    – user10143594
    Nov 21 '18 at 12:51


















  • Could you give us some more background? For instance, in my book, this is the definition of $forall$.
    – Arthur
    Nov 21 '18 at 12:43












  • here $forall$ stand for "for all" x that belong to domain of discourse.
    – user10143594
    Nov 21 '18 at 12:51
















Could you give us some more background? For instance, in my book, this is the definition of $forall$.
– Arthur
Nov 21 '18 at 12:43






Could you give us some more background? For instance, in my book, this is the definition of $forall$.
– Arthur
Nov 21 '18 at 12:43














here $forall$ stand for "for all" x that belong to domain of discourse.
– user10143594
Nov 21 '18 at 12:51




here $forall$ stand for "for all" x that belong to domain of discourse.
– user10143594
Nov 21 '18 at 12:51










1 Answer
1






active

oldest

votes


















0














Hint



1st part, using Natural Deduction :



1) $exists x lnot Qx$ --- premise



2) $forall x Qx$ --- assumed [a]



3) $lnot Qa$ --- assumed [b] from 1) by $exists$-elim



4) $Qa$ --- from 2) by $forall$-elim



5) $bot$ --- contradiction : from 3) and 4)



6) $bot$ --- from 1) and 3) and 5) by $exists$-elim, discharging [b]




7) $lnot forall x Qx$ --- from 2) and 6) by $lnot$-intro, discharging [a].






2nd part : quite similar, using Double Negation.



1) $lnot forall x Qx$ --- premise



2) $lnot exists x lnot Qx$ --- assumed [a]



3) $lnot Qx$ --- assumed [b]



and so on ...






share|cite|improve this answer























  • Thanks. Can you also show for other way round?
    – user10143594
    Nov 21 '18 at 12:46











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007682%2fhow-to-prove-forallx-qx-is-logically-equivalent-to-existsxqx-usi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














Hint



1st part, using Natural Deduction :



1) $exists x lnot Qx$ --- premise



2) $forall x Qx$ --- assumed [a]



3) $lnot Qa$ --- assumed [b] from 1) by $exists$-elim



4) $Qa$ --- from 2) by $forall$-elim



5) $bot$ --- contradiction : from 3) and 4)



6) $bot$ --- from 1) and 3) and 5) by $exists$-elim, discharging [b]




7) $lnot forall x Qx$ --- from 2) and 6) by $lnot$-intro, discharging [a].






2nd part : quite similar, using Double Negation.



1) $lnot forall x Qx$ --- premise



2) $lnot exists x lnot Qx$ --- assumed [a]



3) $lnot Qx$ --- assumed [b]



and so on ...






share|cite|improve this answer























  • Thanks. Can you also show for other way round?
    – user10143594
    Nov 21 '18 at 12:46
















0














Hint



1st part, using Natural Deduction :



1) $exists x lnot Qx$ --- premise



2) $forall x Qx$ --- assumed [a]



3) $lnot Qa$ --- assumed [b] from 1) by $exists$-elim



4) $Qa$ --- from 2) by $forall$-elim



5) $bot$ --- contradiction : from 3) and 4)



6) $bot$ --- from 1) and 3) and 5) by $exists$-elim, discharging [b]




7) $lnot forall x Qx$ --- from 2) and 6) by $lnot$-intro, discharging [a].






2nd part : quite similar, using Double Negation.



1) $lnot forall x Qx$ --- premise



2) $lnot exists x lnot Qx$ --- assumed [a]



3) $lnot Qx$ --- assumed [b]



and so on ...






share|cite|improve this answer























  • Thanks. Can you also show for other way round?
    – user10143594
    Nov 21 '18 at 12:46














0












0








0






Hint



1st part, using Natural Deduction :



1) $exists x lnot Qx$ --- premise



2) $forall x Qx$ --- assumed [a]



3) $lnot Qa$ --- assumed [b] from 1) by $exists$-elim



4) $Qa$ --- from 2) by $forall$-elim



5) $bot$ --- contradiction : from 3) and 4)



6) $bot$ --- from 1) and 3) and 5) by $exists$-elim, discharging [b]




7) $lnot forall x Qx$ --- from 2) and 6) by $lnot$-intro, discharging [a].






2nd part : quite similar, using Double Negation.



1) $lnot forall x Qx$ --- premise



2) $lnot exists x lnot Qx$ --- assumed [a]



3) $lnot Qx$ --- assumed [b]



and so on ...






share|cite|improve this answer














Hint



1st part, using Natural Deduction :



1) $exists x lnot Qx$ --- premise



2) $forall x Qx$ --- assumed [a]



3) $lnot Qa$ --- assumed [b] from 1) by $exists$-elim



4) $Qa$ --- from 2) by $forall$-elim



5) $bot$ --- contradiction : from 3) and 4)



6) $bot$ --- from 1) and 3) and 5) by $exists$-elim, discharging [b]




7) $lnot forall x Qx$ --- from 2) and 6) by $lnot$-intro, discharging [a].






2nd part : quite similar, using Double Negation.



1) $lnot forall x Qx$ --- premise



2) $lnot exists x lnot Qx$ --- assumed [a]



3) $lnot Qx$ --- assumed [b]



and so on ...







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 21 '18 at 13:14

























answered Nov 21 '18 at 12:45









Mauro ALLEGRANZA

64.4k448112




64.4k448112












  • Thanks. Can you also show for other way round?
    – user10143594
    Nov 21 '18 at 12:46


















  • Thanks. Can you also show for other way round?
    – user10143594
    Nov 21 '18 at 12:46
















Thanks. Can you also show for other way round?
– user10143594
Nov 21 '18 at 12:46




Thanks. Can you also show for other way round?
– user10143594
Nov 21 '18 at 12:46


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007682%2fhow-to-prove-forallx-qx-is-logically-equivalent-to-existsxqx-usi%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to change which sound is reproduced for terminal bell?

Title Spacing in Bjornstrup Chapter, Removing Chapter Number From Contents

Can I use Tabulator js library in my java Spring + Thymeleaf project?