What is the Fourier transform of the 2 dimensional airy function?
$begingroup$
What is the Fourier transform for the given two dimensional airy function,
$$f(x,y) = frac{J_1(r)}{r},.$$
Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.
Written explicitly,
$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$
fourier-analysis fourier-transform bessel-functions airy-functions
$endgroup$
add a comment |
$begingroup$
What is the Fourier transform for the given two dimensional airy function,
$$f(x,y) = frac{J_1(r)}{r},.$$
Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.
Written explicitly,
$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$
fourier-analysis fourier-transform bessel-functions airy-functions
$endgroup$
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11
add a comment |
$begingroup$
What is the Fourier transform for the given two dimensional airy function,
$$f(x,y) = frac{J_1(r)}{r},.$$
Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.
Written explicitly,
$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$
fourier-analysis fourier-transform bessel-functions airy-functions
$endgroup$
What is the Fourier transform for the given two dimensional airy function,
$$f(x,y) = frac{J_1(r)}{r},.$$
Where $J_1$ is the Bessel function of the first kind, order one. And $r=sqrt{x^2+y^2}$.
Written explicitly,
$$mathcal{F}left[f(x,y)right] = int^infty_{-infty}int^infty_{-infty}f(x,y)expleft[ -i2pileft( f_xx+f_yyright)right], dx,dy, .$$
fourier-analysis fourier-transform bessel-functions airy-functions
fourier-analysis fourier-transform bessel-functions airy-functions
asked Jan 1 at 16:52
TianTian
77112
77112
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11
add a comment |
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate
$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058646%2fwhat-is-the-fourier-transform-of-the-2-dimensional-airy-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate
$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.
$endgroup$
add a comment |
$begingroup$
A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate
$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.
$endgroup$
add a comment |
$begingroup$
A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate
$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.
$endgroup$
A radial function has a radial Fourier transform, and as stated by reuns in the comments we just need to evaluate
$$int_{0}^{+infty}J_1(r)int_{0}^{2pi} e^{-2pi i r cos(t) w},dt,dr $$
or
$$ 2pi int_{0}^{+infty} J_1(r) J_0(2pi r w),dr. $$
Using the Fourier transforms of $J_0$ and $J_1$, the last integral equals zero if $2pi w > 1$, $pi$ if $2pi w=1$ and $2pi$ if $0leq 2pi w<1$. In other terms the Fourier transform of your function is a multiple of the indicator function of the unit circle, halved on the boundary.
answered Jan 1 at 19:47
Jack D'AurizioJack D'Aurizio
292k33284674
292k33284674
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058646%2fwhat-is-the-fourier-transform-of-the-2-dimensional-airy-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$mathcal{F}[f](u,v) = G(sqrt{u^2+v^2})$ where $G(w) = int_0^infty J_1(r)int_0^{2pi } e^{-2i pi rcos(t) w} dt dr$
$endgroup$
– reuns
Jan 1 at 17:11