How to arrive at $int_{0}^{1} f^3(x) , dx < (int_{0}^{1} f(x) , dx)^2$?
$begingroup$
Define $f : [0,1] to mathbb{R} $ differentiable satisfying $f(0)=0$ and $0<f'(x)<1$.
Prove: $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$
I found the following answer,
Define $F(x)=displaystyleint_{0}^{x} f^3(t) , dt - left(displaystyleint_{0}^{x} f(t) , dtright)^2$
We have $$F'(x)=f^3(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)f(x)=f(x)left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]$$
and
$$left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right]$$
from which we can arrive at the conclusion.
But I felt a little confused.
In the past I usually proved the inequality by classical inequalities and something like Taylor expansion to use the condition about derivative.
But this answer is little out of my expectation.
Do we have other proofs or ideas to arrive at $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$? And other thoughts about solving these types of issues?
I think when we talk about $left(displaystyleint_{0}^{1} f(x) , dxright)^2 >ldots ,$ it's a little difficult to deal with. I don't quite know what tools to use.
real-analysis inequality
$endgroup$
add a comment |
$begingroup$
Define $f : [0,1] to mathbb{R} $ differentiable satisfying $f(0)=0$ and $0<f'(x)<1$.
Prove: $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$
I found the following answer,
Define $F(x)=displaystyleint_{0}^{x} f^3(t) , dt - left(displaystyleint_{0}^{x} f(t) , dtright)^2$
We have $$F'(x)=f^3(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)f(x)=f(x)left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]$$
and
$$left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right]$$
from which we can arrive at the conclusion.
But I felt a little confused.
In the past I usually proved the inequality by classical inequalities and something like Taylor expansion to use the condition about derivative.
But this answer is little out of my expectation.
Do we have other proofs or ideas to arrive at $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$? And other thoughts about solving these types of issues?
I think when we talk about $left(displaystyleint_{0}^{1} f(x) , dxright)^2 >ldots ,$ it's a little difficult to deal with. I don't quite know what tools to use.
real-analysis inequality
$endgroup$
2
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40
add a comment |
$begingroup$
Define $f : [0,1] to mathbb{R} $ differentiable satisfying $f(0)=0$ and $0<f'(x)<1$.
Prove: $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$
I found the following answer,
Define $F(x)=displaystyleint_{0}^{x} f^3(t) , dt - left(displaystyleint_{0}^{x} f(t) , dtright)^2$
We have $$F'(x)=f^3(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)f(x)=f(x)left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]$$
and
$$left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right]$$
from which we can arrive at the conclusion.
But I felt a little confused.
In the past I usually proved the inequality by classical inequalities and something like Taylor expansion to use the condition about derivative.
But this answer is little out of my expectation.
Do we have other proofs or ideas to arrive at $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$? And other thoughts about solving these types of issues?
I think when we talk about $left(displaystyleint_{0}^{1} f(x) , dxright)^2 >ldots ,$ it's a little difficult to deal with. I don't quite know what tools to use.
real-analysis inequality
$endgroup$
Define $f : [0,1] to mathbb{R} $ differentiable satisfying $f(0)=0$ and $0<f'(x)<1$.
Prove: $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$
I found the following answer,
Define $F(x)=displaystyleint_{0}^{x} f^3(t) , dt - left(displaystyleint_{0}^{x} f(t) , dtright)^2$
We have $$F'(x)=f^3(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)f(x)=f(x)left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]$$
and
$$left[f^2(x)-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right]$$
from which we can arrive at the conclusion.
But I felt a little confused.
In the past I usually proved the inequality by classical inequalities and something like Taylor expansion to use the condition about derivative.
But this answer is little out of my expectation.
Do we have other proofs or ideas to arrive at $displaystyleint_{0}^{1} f^3(x) , dx < left(displaystyleint_{0}^{1} f(x) , dxright)^2$? And other thoughts about solving these types of issues?
I think when we talk about $left(displaystyleint_{0}^{1} f(x) , dxright)^2 >ldots ,$ it's a little difficult to deal with. I don't quite know what tools to use.
real-analysis inequality
real-analysis inequality
asked Jan 1 at 16:18
ZeroZero
592111
592111
2
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40
add a comment |
2
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40
2
2
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Clearly $f(x) > 0$ for all $x in langle 0,1]$. As the solution states, we have
$$left[f(x)^2-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right] < 0$$
so $f(x)^2 < 2displaystyleint_0^xf(t),dt$ for all $x in langle 0,1]$. Also notice that $left(displaystyleint_{0}^{x} f(t) , dtright)' = f(x)$ so
begin{align}
int_0^1f(x)^3,dx &= int_0^1f(x)^2, f(x),dx \
&< int_0^12 left(displaystyleint_{0}^{x} f(t) , dtright)left(displaystyleint_{0}^{x} f(t) , dtright)',dx \
&= left(displaystyleint_{0}^{x} f(t) , dtright)^2Bigg|_0^1 \
&= left(displaystyleint_{0}^{1} f(t) , dtright)^2
end{align}
If we assume $f in C^1[0,1]$, we can prove the first inequality even easier:
$$f(x)^2 = int_0^x 2f(t),f'(t),dt< 2displaystyleint_0^xf(t),dt$$
$endgroup$
add a comment |
$begingroup$
Write $F(x) = int_0^x f(x)dx$ and $I= int_0^1 f(x)dx$. Using integration by parts formula, we get
$$begin{eqnarray}
int_0^1 f(x)^3dx &=& (F(x)-F(1))f(x)^2 Big|^{x=1}_{x=0} + 2int_0^1 (F(1)-F(x))f(x)f'(x)dx\
&<&2int_0^1 (F(1)-F(x))f(x)dx = -(F(1)-F(x))^2Big|^{x=1}_{x=0} = F(1)^2 =I^2.
end{eqnarray}$$
Note: However, this calculation is only valid under the assumption that $f$ is absolutely continuous, or $f'$ is Riemann integrable.
$endgroup$
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058613%2fhow-to-arrive-at-int-01-f3x-dx-int-01-fx-dx2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Clearly $f(x) > 0$ for all $x in langle 0,1]$. As the solution states, we have
$$left[f(x)^2-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right] < 0$$
so $f(x)^2 < 2displaystyleint_0^xf(t),dt$ for all $x in langle 0,1]$. Also notice that $left(displaystyleint_{0}^{x} f(t) , dtright)' = f(x)$ so
begin{align}
int_0^1f(x)^3,dx &= int_0^1f(x)^2, f(x),dx \
&< int_0^12 left(displaystyleint_{0}^{x} f(t) , dtright)left(displaystyleint_{0}^{x} f(t) , dtright)',dx \
&= left(displaystyleint_{0}^{x} f(t) , dtright)^2Bigg|_0^1 \
&= left(displaystyleint_{0}^{1} f(t) , dtright)^2
end{align}
If we assume $f in C^1[0,1]$, we can prove the first inequality even easier:
$$f(x)^2 = int_0^x 2f(t),f'(t),dt< 2displaystyleint_0^xf(t),dt$$
$endgroup$
add a comment |
$begingroup$
Clearly $f(x) > 0$ for all $x in langle 0,1]$. As the solution states, we have
$$left[f(x)^2-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right] < 0$$
so $f(x)^2 < 2displaystyleint_0^xf(t),dt$ for all $x in langle 0,1]$. Also notice that $left(displaystyleint_{0}^{x} f(t) , dtright)' = f(x)$ so
begin{align}
int_0^1f(x)^3,dx &= int_0^1f(x)^2, f(x),dx \
&< int_0^12 left(displaystyleint_{0}^{x} f(t) , dtright)left(displaystyleint_{0}^{x} f(t) , dtright)',dx \
&= left(displaystyleint_{0}^{x} f(t) , dtright)^2Bigg|_0^1 \
&= left(displaystyleint_{0}^{1} f(t) , dtright)^2
end{align}
If we assume $f in C^1[0,1]$, we can prove the first inequality even easier:
$$f(x)^2 = int_0^x 2f(t),f'(t),dt< 2displaystyleint_0^xf(t),dt$$
$endgroup$
add a comment |
$begingroup$
Clearly $f(x) > 0$ for all $x in langle 0,1]$. As the solution states, we have
$$left[f(x)^2-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right] < 0$$
so $f(x)^2 < 2displaystyleint_0^xf(t),dt$ for all $x in langle 0,1]$. Also notice that $left(displaystyleint_{0}^{x} f(t) , dtright)' = f(x)$ so
begin{align}
int_0^1f(x)^3,dx &= int_0^1f(x)^2, f(x),dx \
&< int_0^12 left(displaystyleint_{0}^{x} f(t) , dtright)left(displaystyleint_{0}^{x} f(t) , dtright)',dx \
&= left(displaystyleint_{0}^{x} f(t) , dtright)^2Bigg|_0^1 \
&= left(displaystyleint_{0}^{1} f(t) , dtright)^2
end{align}
If we assume $f in C^1[0,1]$, we can prove the first inequality even easier:
$$f(x)^2 = int_0^x 2f(t),f'(t),dt< 2displaystyleint_0^xf(t),dt$$
$endgroup$
Clearly $f(x) > 0$ for all $x in langle 0,1]$. As the solution states, we have
$$left[f(x)^2-2 left(displaystyleint_{0}^{x} f(t) , dtright)right]'=2f(x)left[f'(x)-1right] < 0$$
so $f(x)^2 < 2displaystyleint_0^xf(t),dt$ for all $x in langle 0,1]$. Also notice that $left(displaystyleint_{0}^{x} f(t) , dtright)' = f(x)$ so
begin{align}
int_0^1f(x)^3,dx &= int_0^1f(x)^2, f(x),dx \
&< int_0^12 left(displaystyleint_{0}^{x} f(t) , dtright)left(displaystyleint_{0}^{x} f(t) , dtright)',dx \
&= left(displaystyleint_{0}^{x} f(t) , dtright)^2Bigg|_0^1 \
&= left(displaystyleint_{0}^{1} f(t) , dtright)^2
end{align}
If we assume $f in C^1[0,1]$, we can prove the first inequality even easier:
$$f(x)^2 = int_0^x 2f(t),f'(t),dt< 2displaystyleint_0^xf(t),dt$$
answered Jan 1 at 17:40
mechanodroidmechanodroid
28.9k62648
28.9k62648
add a comment |
add a comment |
$begingroup$
Write $F(x) = int_0^x f(x)dx$ and $I= int_0^1 f(x)dx$. Using integration by parts formula, we get
$$begin{eqnarray}
int_0^1 f(x)^3dx &=& (F(x)-F(1))f(x)^2 Big|^{x=1}_{x=0} + 2int_0^1 (F(1)-F(x))f(x)f'(x)dx\
&<&2int_0^1 (F(1)-F(x))f(x)dx = -(F(1)-F(x))^2Big|^{x=1}_{x=0} = F(1)^2 =I^2.
end{eqnarray}$$
Note: However, this calculation is only valid under the assumption that $f$ is absolutely continuous, or $f'$ is Riemann integrable.
$endgroup$
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
add a comment |
$begingroup$
Write $F(x) = int_0^x f(x)dx$ and $I= int_0^1 f(x)dx$. Using integration by parts formula, we get
$$begin{eqnarray}
int_0^1 f(x)^3dx &=& (F(x)-F(1))f(x)^2 Big|^{x=1}_{x=0} + 2int_0^1 (F(1)-F(x))f(x)f'(x)dx\
&<&2int_0^1 (F(1)-F(x))f(x)dx = -(F(1)-F(x))^2Big|^{x=1}_{x=0} = F(1)^2 =I^2.
end{eqnarray}$$
Note: However, this calculation is only valid under the assumption that $f$ is absolutely continuous, or $f'$ is Riemann integrable.
$endgroup$
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
add a comment |
$begingroup$
Write $F(x) = int_0^x f(x)dx$ and $I= int_0^1 f(x)dx$. Using integration by parts formula, we get
$$begin{eqnarray}
int_0^1 f(x)^3dx &=& (F(x)-F(1))f(x)^2 Big|^{x=1}_{x=0} + 2int_0^1 (F(1)-F(x))f(x)f'(x)dx\
&<&2int_0^1 (F(1)-F(x))f(x)dx = -(F(1)-F(x))^2Big|^{x=1}_{x=0} = F(1)^2 =I^2.
end{eqnarray}$$
Note: However, this calculation is only valid under the assumption that $f$ is absolutely continuous, or $f'$ is Riemann integrable.
$endgroup$
Write $F(x) = int_0^x f(x)dx$ and $I= int_0^1 f(x)dx$. Using integration by parts formula, we get
$$begin{eqnarray}
int_0^1 f(x)^3dx &=& (F(x)-F(1))f(x)^2 Big|^{x=1}_{x=0} + 2int_0^1 (F(1)-F(x))f(x)f'(x)dx\
&<&2int_0^1 (F(1)-F(x))f(x)dx = -(F(1)-F(x))^2Big|^{x=1}_{x=0} = F(1)^2 =I^2.
end{eqnarray}$$
Note: However, this calculation is only valid under the assumption that $f$ is absolutely continuous, or $f'$ is Riemann integrable.
edited Jan 1 at 19:45
answered Jan 1 at 18:49
SongSong
18.6k21651
18.6k21651
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
add a comment |
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
I believe this implicitly assumes that $f'$ is integrable. Still, $+1$.
$endgroup$
– mechanodroid
Jan 1 at 19:32
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
$begingroup$
@mechanodroid Oops, I missed it. Thanks for your valuable comment!
$endgroup$
– Song
Jan 1 at 19:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058613%2fhow-to-arrive-at-int-01-f3x-dx-int-01-fx-dx2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
I get the feeling that it's related to the fact that $sum_{k=1}^n k^3=(sum_{k=1}^n k)^2$. Perhaps this could be used in a proof somehow?
$endgroup$
– AlephNull
Jan 1 at 16:40