Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})cdots(1+frac{1}{a_n})$, where $a_1=1$, $a_n=n(1+a_{n-1})$
$begingroup$
Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$
begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}
Then I'm stuck. How to proceed?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$
begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}
Then I'm stuck. How to proceed?
sequences-and-series
$endgroup$
2
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58
add a comment |
$begingroup$
Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$
begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}
Then I'm stuck. How to proceed?
sequences-and-series
$endgroup$
Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$
begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}
Then I'm stuck. How to proceed?
sequences-and-series
sequences-and-series
edited Jan 1 at 15:43
Sangchul Lee
96.8k12173283
96.8k12173283
asked Jan 1 at 15:11
MathsaddictMathsaddict
3669
3669
2
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58
add a comment |
2
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58
2
2
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$
$endgroup$
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
add a comment |
$begingroup$
Show by induction that
$a_1=1!/0!$
$a_2=2!/0!+2!/1!$
$a_3=3!/0!+3!/1!+3!/2!$
...
$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$
Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.
$endgroup$
add a comment |
$begingroup$
From where you stuck you can proceed as
begin{align}
frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
&=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
1+frac{1}{1!}+ldots+frac{1}{n!}.
end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058562%2fevaluate-lim-n-to-infty1-frac1a-1-cdots1-frac1a-n-where-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$
$endgroup$
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
add a comment |
$begingroup$
Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$
$endgroup$
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
add a comment |
$begingroup$
Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$
$endgroup$
Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$
edited Jan 1 at 15:32
answered Jan 1 at 15:27
Ben WBen W
2,734918
2,734918
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
add a comment |
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
$begingroup$
Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
$endgroup$
– Oscar Lanzi
Jan 1 at 15:29
1
1
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
$begingroup$
@OscarLanzi oops! Fixed it.
$endgroup$
– Ben W
Jan 1 at 15:32
add a comment |
$begingroup$
Show by induction that
$a_1=1!/0!$
$a_2=2!/0!+2!/1!$
$a_3=3!/0!+3!/1!+3!/2!$
...
$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$
Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.
$endgroup$
add a comment |
$begingroup$
Show by induction that
$a_1=1!/0!$
$a_2=2!/0!+2!/1!$
$a_3=3!/0!+3!/1!+3!/2!$
...
$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$
Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.
$endgroup$
add a comment |
$begingroup$
Show by induction that
$a_1=1!/0!$
$a_2=2!/0!+2!/1!$
$a_3=3!/0!+3!/1!+3!/2!$
...
$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$
Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.
$endgroup$
Show by induction that
$a_1=1!/0!$
$a_2=2!/0!+2!/1!$
$a_3=3!/0!+3!/1!+3!/2!$
...
$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$
Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.
edited Jan 1 at 22:53
answered Jan 1 at 15:28
Oscar LanziOscar Lanzi
13.7k12136
13.7k12136
add a comment |
add a comment |
$begingroup$
From where you stuck you can proceed as
begin{align}
frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
&=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
1+frac{1}{1!}+ldots+frac{1}{n!}.
end{align}
$endgroup$
add a comment |
$begingroup$
From where you stuck you can proceed as
begin{align}
frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
&=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
1+frac{1}{1!}+ldots+frac{1}{n!}.
end{align}
$endgroup$
add a comment |
$begingroup$
From where you stuck you can proceed as
begin{align}
frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
&=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
1+frac{1}{1!}+ldots+frac{1}{n!}.
end{align}
$endgroup$
From where you stuck you can proceed as
begin{align}
frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
&=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
1+frac{1}{1!}+ldots+frac{1}{n!}.
end{align}
answered Jan 1 at 15:49
A.Γ.A.Γ.
22.9k32656
22.9k32656
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058562%2fevaluate-lim-n-to-infty1-frac1a-1-cdots1-frac1a-n-where-a-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58