Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})cdots(1+frac{1}{a_n})$, where $a_1=1$, $a_n=n(1+a_{n-1})$












1












$begingroup$



Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$




begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}



Then I'm stuck. How to proceed?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
    $endgroup$
    – Somos
    Jan 1 at 15:58
















1












$begingroup$



Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$




begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}



Then I'm stuck. How to proceed?










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
    $endgroup$
    – Somos
    Jan 1 at 15:58














1












1








1





$begingroup$



Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$




begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}



Then I'm stuck. How to proceed?










share|cite|improve this question











$endgroup$





Evaluate $lim_{ntoinfty}(1+frac{1}{a_1})(1+frac{1}{a_2})cdots(1+frac{1}{a_n})$,
where $a_1 = 1$, $a_n = n(1+a_{n-1})$




begin{align*}
&lim_{ntoinfty} left(1+frac{1}{a_1}right)left(1+frac{1}{a_2}right)cdotsleft(1+frac{1}{a_n}right) \
&= lim_{ntoinfty} frac{1}{a_1} cdot frac{1}{2} cdot frac{1}{3} cdots frac{1}{n} cdot (a_n + 1) \
&= lim_{ntoinfty} frac{a_n + 1}{n!}.
end{align*}



Then I'm stuck. How to proceed?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 15:43









Sangchul Lee

96.8k12173283




96.8k12173283










asked Jan 1 at 15:11









MathsaddictMathsaddict

3669




3669








  • 2




    $begingroup$
    This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
    $endgroup$
    – Somos
    Jan 1 at 15:58














  • 2




    $begingroup$
    This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
    $endgroup$
    – Somos
    Jan 1 at 15:58








2




2




$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58




$begingroup$
This is OEIS sequence A007526. The OEIS entry has much information including the limit you want to find.
$endgroup$
– Somos
Jan 1 at 15:58










3 Answers
3






active

oldest

votes


















5












$begingroup$

Observe that
$$a_n=n+na_{n-1}$$
$$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
and so on, giving us eventually
$$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
Now we have
$$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
$$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
$$=sum_{k=0}^inftyfrac{1}{k!}=e$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
    $endgroup$
    – Oscar Lanzi
    Jan 1 at 15:29






  • 1




    $begingroup$
    @OscarLanzi oops! Fixed it.
    $endgroup$
    – Ben W
    Jan 1 at 15:32



















3












$begingroup$

Show by induction that



$a_1=1!/0!$



$a_2=2!/0!+2!/1!$



$a_3=3!/0!+3!/1!+3!/2!$



...



$color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$



Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    From where you stuck you can proceed as
    begin{align}
    frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
    &=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
    1+frac{1}{1!}+ldots+frac{1}{n!}.
    end{align}






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058562%2fevaluate-lim-n-to-infty1-frac1a-1-cdots1-frac1a-n-where-a-1%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Observe that
      $$a_n=n+na_{n-1}$$
      $$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
      and so on, giving us eventually
      $$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
      Now we have
      $$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
      $$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
      $$=sum_{k=0}^inftyfrac{1}{k!}=e$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
        $endgroup$
        – Oscar Lanzi
        Jan 1 at 15:29






      • 1




        $begingroup$
        @OscarLanzi oops! Fixed it.
        $endgroup$
        – Ben W
        Jan 1 at 15:32
















      5












      $begingroup$

      Observe that
      $$a_n=n+na_{n-1}$$
      $$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
      and so on, giving us eventually
      $$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
      Now we have
      $$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
      $$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
      $$=sum_{k=0}^inftyfrac{1}{k!}=e$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
        $endgroup$
        – Oscar Lanzi
        Jan 1 at 15:29






      • 1




        $begingroup$
        @OscarLanzi oops! Fixed it.
        $endgroup$
        – Ben W
        Jan 1 at 15:32














      5












      5








      5





      $begingroup$

      Observe that
      $$a_n=n+na_{n-1}$$
      $$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
      and so on, giving us eventually
      $$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
      Now we have
      $$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
      $$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
      $$=sum_{k=0}^inftyfrac{1}{k!}=e$$






      share|cite|improve this answer











      $endgroup$



      Observe that
      $$a_n=n+na_{n-1}$$
      $$a_n=n+n(n-1)+n(n-1)a_{n-2}$$
      and so on, giving us eventually
      $$a_n=sum_{k=1}^nfrac{n!}{(k-1)!}$$
      Now we have
      $$lim_{ntoinfty}frac{1}{n!}(a_n+1)=lim_{ntoinfty}frac{a_n}{n!}$$
      $$=lim_{ntoinfty}sum_{k=1}^nfrac{1}{(k-1)!}$$
      $$=sum_{k=0}^inftyfrac{1}{k!}=e$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 1 at 15:32

























      answered Jan 1 at 15:27









      Ben WBen W

      2,734918




      2,734918












      • $begingroup$
        Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
        $endgroup$
        – Oscar Lanzi
        Jan 1 at 15:29






      • 1




        $begingroup$
        @OscarLanzi oops! Fixed it.
        $endgroup$
        – Ben W
        Jan 1 at 15:32


















      • $begingroup$
        Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
        $endgroup$
        – Oscar Lanzi
        Jan 1 at 15:29






      • 1




        $begingroup$
        @OscarLanzi oops! Fixed it.
        $endgroup$
        – Ben W
        Jan 1 at 15:32
















      $begingroup$
      Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
      $endgroup$
      – Oscar Lanzi
      Jan 1 at 15:29




      $begingroup$
      Not $e+1$. The sum for $e$ includes the term with $0!$ as denominator.
      $endgroup$
      – Oscar Lanzi
      Jan 1 at 15:29




      1




      1




      $begingroup$
      @OscarLanzi oops! Fixed it.
      $endgroup$
      – Ben W
      Jan 1 at 15:32




      $begingroup$
      @OscarLanzi oops! Fixed it.
      $endgroup$
      – Ben W
      Jan 1 at 15:32











      3












      $begingroup$

      Show by induction that



      $a_1=1!/0!$



      $a_2=2!/0!+2!/1!$



      $a_3=3!/0!+3!/1!+3!/2!$



      ...



      $color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$



      Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.






      share|cite|improve this answer











      $endgroup$


















        3












        $begingroup$

        Show by induction that



        $a_1=1!/0!$



        $a_2=2!/0!+2!/1!$



        $a_3=3!/0!+3!/1!+3!/2!$



        ...



        $color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$



        Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.






        share|cite|improve this answer











        $endgroup$
















          3












          3








          3





          $begingroup$

          Show by induction that



          $a_1=1!/0!$



          $a_2=2!/0!+2!/1!$



          $a_3=3!/0!+3!/1!+3!/2!$



          ...



          $color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$



          Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.






          share|cite|improve this answer











          $endgroup$



          Show by induction that



          $a_1=1!/0!$



          $a_2=2!/0!+2!/1!$



          $a_3=3!/0!+3!/1!+3!/2!$



          ...



          $color{blue}{a_n=n!/0!+n!/1!+n!/2!+...+n!/(n-1)!}$



          Thereby the limit is $1/0!+1/1!+2/2!+...1/n!+...=e$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 1 at 22:53

























          answered Jan 1 at 15:28









          Oscar LanziOscar Lanzi

          13.7k12136




          13.7k12136























              1












              $begingroup$

              From where you stuck you can proceed as
              begin{align}
              frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
              &=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
              1+frac{1}{1!}+ldots+frac{1}{n!}.
              end{align}






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                From where you stuck you can proceed as
                begin{align}
                frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
                &=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
                1+frac{1}{1!}+ldots+frac{1}{n!}.
                end{align}






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  From where you stuck you can proceed as
                  begin{align}
                  frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
                  &=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
                  1+frac{1}{1!}+ldots+frac{1}{n!}.
                  end{align}






                  share|cite|improve this answer









                  $endgroup$



                  From where you stuck you can proceed as
                  begin{align}
                  frac{a_n+1}{n!}&=frac{a_n}{n!}+frac{1}{n!}=frac{1}{(n-1)!}frac{a_n}{n}+frac{1}{n!}=frac{1}{(n-1)!}(a_{n-1}+1)+frac{1}{n!}=\
                  &=frac{a_{n-1}}{(n-1)!}+frac{1}{(n-1)!}+frac{1}{n!}=ldots=
                  1+frac{1}{1!}+ldots+frac{1}{n!}.
                  end{align}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 1 at 15:49









                  A.Γ.A.Γ.

                  22.9k32656




                  22.9k32656






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058562%2fevaluate-lim-n-to-infty1-frac1a-1-cdots1-frac1a-n-where-a-1%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      mysqli_query(): Empty query in /home/lucindabrummitt/public_html/blog/wp-includes/wp-db.php on line 1924

                      How to change which sound is reproduced for terminal bell?

                      Can I use Tabulator js library in my java Spring + Thymeleaf project?