Uniform convergence of iterated improper integrals on $(0,infty)$
$begingroup$
I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
$$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$
I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.
The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.
My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.
real-analysis calculus improper-integrals uniform-convergence
$endgroup$
add a comment |
$begingroup$
I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
$$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$
I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.
The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.
My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.
real-analysis calculus improper-integrals uniform-convergence
$endgroup$
add a comment |
$begingroup$
I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
$$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$
I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.
The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.
My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.
real-analysis calculus improper-integrals uniform-convergence
$endgroup$
I'm trying to get a better understanding of when it is permissible to swtich conditionally convergent improper integrals (when Fubini inapplicable) and I looked at a case where it works:
$$int_0^infty int_0^infty e^{-xy} sin x , dx, dy = int_0^infty int_0^infty e^{-xy} sin x , dy , dx $$
I know the inner iterated integrals are uniformly convergent by the Weierstrass test for $x , y in [c, infty)$ where $c > 0$. Since $|e^{-xy} sin x | leqslant e^{-cy}$ for $c leq x < infty$ , then $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $c leq x < infty$. Since $|e^{-xy} sin x | leqslant e^{-cx}$ for $c leq y < infty$ , then $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $c leq y < infty$.
The Weierstrass test is not helpful to consider uniform convergence on $(0,infty)$.
My question is how to determine if $int_0^infty e^{-xy} sin x , dy$ converges uniformly for $0 < x < infty$ and $int_0^infty e^{-xy} sin x , dx$ converges uniformly for $0 < y < infty$ and either prove it or disprove it.
real-analysis calculus improper-integrals uniform-convergence
real-analysis calculus improper-integrals uniform-convergence
edited Dec 13 '18 at 19:02
RRL
53.4k52574
53.4k52574
asked Dec 12 '18 at 22:44
WoodWorkerWoodWorker
470314
470314
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.
For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have
$$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$
Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.
For the second integral, with $x_n = 1/n in (0,infty)$ we have
$$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$
and, again, violation of the Cauchy criterion precludes uniform convergence.
$endgroup$
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037333%2funiform-convergence-of-iterated-improper-integrals-on-0-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.
For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have
$$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$
Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.
For the second integral, with $x_n = 1/n in (0,infty)$ we have
$$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$
and, again, violation of the Cauchy criterion precludes uniform convergence.
$endgroup$
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
add a comment |
$begingroup$
Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.
For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have
$$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$
Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.
For the second integral, with $x_n = 1/n in (0,infty)$ we have
$$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$
and, again, violation of the Cauchy criterion precludes uniform convergence.
$endgroup$
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
add a comment |
$begingroup$
Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.
For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have
$$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$
Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.
For the second integral, with $x_n = 1/n in (0,infty)$ we have
$$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$
and, again, violation of the Cauchy criterion precludes uniform convergence.
$endgroup$
Neither integral is uniformly convergent for values of the parameter in the open interval $(0,infty)$.
For the first integral, with $y_n = (2npi + pi)^{-1} in (0,infty)$ we have
$$left|int_{2npi}^{2npi+pi} e^{-xy_n} sin x , dxright|geqslant e^{-(2npi+pi) y_n}int_{2npi}^{2npi+pi} sin x , dx = 2 e^{-(2npi+pi)y_n}= 2e^{-1}$$
Since the RHS does not converge to $0$ as $n to infty$, the Cauchy criterion for uniform convergence is violated.
For the second integral, with $x_n = 1/n in (0,infty)$ we have
$$left|int_n^infty e^{-x_ny} sin x_n , dyright| = left|frac{sin x_n}{x_n} right|e^{-nx_n} = frac{sin frac{1}{n}}{frac{1}{n}}e^{-1} ,,, xrightarrow[n to infty]{} ,,e^{-1},$$
and, again, violation of the Cauchy criterion precludes uniform convergence.
answered Dec 12 '18 at 23:01
RRLRRL
53.4k52574
53.4k52574
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
add a comment |
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Thank you! I'm a bit unsure how to prove non-uniform convergence. But now I'm confused why the integral switch is justified if these are not uniformly convergent improper integrals.
$endgroup$
– WoodWorker
Dec 13 '18 at 0:07
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
$begingroup$
Also can you take a look at this: math.stackexchange.com/q/3020423/318852
$endgroup$
– WoodWorker
Dec 13 '18 at 0:10
1
1
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
$begingroup$
@WoodWorker: Proving non-uniform convergence basically means we find $epsilon_0 >0$ so that for any $C > 0$ no matter how large there exists $c_2 > c_1 > C$ and $y_C$ such that $left|int_{c_1}^{c_2}f(x,y_C) , dx right| > epsilon_0$ -- which follows if as I showed there are sequences $beta_n > alpha_n$ that diverge to $+infty$ and $y_n$ where $left|int_{alpha_n}^{beta_n}f(x,y_n) , dx right| notto 0$.
$endgroup$
– RRL
Dec 13 '18 at 5:51
1
1
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
$begingroup$
Uniform convergence of $int_0^infty f(x,y) , dx$ and $int_0^infty f(x,y) , dy$ are neither necessary (as we see here) nor sufficient for switching these improper integrals. It can be justified however if $F(x) = int_0^infty f(x,y) , dy$ is such that $int_0^infty F(x) , dx$ is uniformly convergent.
$endgroup$
– RRL
Dec 13 '18 at 5:54
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3037333%2funiform-convergence-of-iterated-improper-integrals-on-0-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown