$L^1$ inequality between ordered real numbers implies $L^2$ norm inequality
Let $x_1,ldots,x_n$ be real numbers such that $|x_1|geq ldotsgeq |x_n|$ and $displaystyle sum_{i=k+1}^n |x_i| leq alpha sum_{i=1}^k |x_i|$ where $1leq k leq n-1$ and $alpha >0$.
Prove that $$sum_{i=k+1}^n x_i^2 leq alpha sum_{i=1}^k x_i^2$$
I have managed to prove a looser inequality: $$begin{align}
alpha sum_{i=1}^k x_i^2
&geq frac{alpha}{k}left(sum_{i=1}^k |x_i| right)^2 quad quad text{Cauchy-Schwarz}\
&geq frac 1k sum_{i=k+1}^n |x_i| sum_{i=1}^k |x_i|\
&geq frac 1k left(sum_{i=k+1}^n |x_i| right)^2\
&geq frac 1k sum_{i=k+1}^n x_i^2 quad quad text{since } |z|_1 geq |z|_2
end{align}$$
Since $frac 1k$ is not $geq 1$, I'm stuck...
real-analysis inequality cauchy-schwarz-inequality
add a comment |
Let $x_1,ldots,x_n$ be real numbers such that $|x_1|geq ldotsgeq |x_n|$ and $displaystyle sum_{i=k+1}^n |x_i| leq alpha sum_{i=1}^k |x_i|$ where $1leq k leq n-1$ and $alpha >0$.
Prove that $$sum_{i=k+1}^n x_i^2 leq alpha sum_{i=1}^k x_i^2$$
I have managed to prove a looser inequality: $$begin{align}
alpha sum_{i=1}^k x_i^2
&geq frac{alpha}{k}left(sum_{i=1}^k |x_i| right)^2 quad quad text{Cauchy-Schwarz}\
&geq frac 1k sum_{i=k+1}^n |x_i| sum_{i=1}^k |x_i|\
&geq frac 1k left(sum_{i=k+1}^n |x_i| right)^2\
&geq frac 1k sum_{i=k+1}^n x_i^2 quad quad text{since } |z|_1 geq |z|_2
end{align}$$
Since $frac 1k$ is not $geq 1$, I'm stuck...
real-analysis inequality cauchy-schwarz-inequality
add a comment |
Let $x_1,ldots,x_n$ be real numbers such that $|x_1|geq ldotsgeq |x_n|$ and $displaystyle sum_{i=k+1}^n |x_i| leq alpha sum_{i=1}^k |x_i|$ where $1leq k leq n-1$ and $alpha >0$.
Prove that $$sum_{i=k+1}^n x_i^2 leq alpha sum_{i=1}^k x_i^2$$
I have managed to prove a looser inequality: $$begin{align}
alpha sum_{i=1}^k x_i^2
&geq frac{alpha}{k}left(sum_{i=1}^k |x_i| right)^2 quad quad text{Cauchy-Schwarz}\
&geq frac 1k sum_{i=k+1}^n |x_i| sum_{i=1}^k |x_i|\
&geq frac 1k left(sum_{i=k+1}^n |x_i| right)^2\
&geq frac 1k sum_{i=k+1}^n x_i^2 quad quad text{since } |z|_1 geq |z|_2
end{align}$$
Since $frac 1k$ is not $geq 1$, I'm stuck...
real-analysis inequality cauchy-schwarz-inequality
Let $x_1,ldots,x_n$ be real numbers such that $|x_1|geq ldotsgeq |x_n|$ and $displaystyle sum_{i=k+1}^n |x_i| leq alpha sum_{i=1}^k |x_i|$ where $1leq k leq n-1$ and $alpha >0$.
Prove that $$sum_{i=k+1}^n x_i^2 leq alpha sum_{i=1}^k x_i^2$$
I have managed to prove a looser inequality: $$begin{align}
alpha sum_{i=1}^k x_i^2
&geq frac{alpha}{k}left(sum_{i=1}^k |x_i| right)^2 quad quad text{Cauchy-Schwarz}\
&geq frac 1k sum_{i=k+1}^n |x_i| sum_{i=1}^k |x_i|\
&geq frac 1k left(sum_{i=k+1}^n |x_i| right)^2\
&geq frac 1k sum_{i=k+1}^n x_i^2 quad quad text{since } |z|_1 geq |z|_2
end{align}$$
Since $frac 1k$ is not $geq 1$, I'm stuck...
real-analysis inequality cauchy-schwarz-inequality
real-analysis inequality cauchy-schwarz-inequality
edited Nov 21 '18 at 11:28
Tianlalu
3,09621038
3,09621038
asked Nov 21 '18 at 10:15
Issou Chankla
254
254
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
It is quite simple: Note that $|x_i| le |x_k|$ for any $i in {k+1,ldots,n}$. Thus
$$tag{1}sum_{i=k+1}^n x_i^2 le |x_k| sum_{i=k+1}^n |x_i| le alpha |x_k| sum_{i=1}^k |x_i|,$$
where the given condition is used in the last step. Now $|x_k x_i| le x_i^2$ for an $i=1,ldots,k$, because $|x_k| le |x_i|$ for all $i=1,ldots,k$. So proceeding in (1) gives the claimed estimate
$$sum_{i=k+1}^n x_i^2lealpha sum_{i=1}^k x_i^2.$$
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007523%2fl1-inequality-between-ordered-real-numbers-implies-l2-norm-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
It is quite simple: Note that $|x_i| le |x_k|$ for any $i in {k+1,ldots,n}$. Thus
$$tag{1}sum_{i=k+1}^n x_i^2 le |x_k| sum_{i=k+1}^n |x_i| le alpha |x_k| sum_{i=1}^k |x_i|,$$
where the given condition is used in the last step. Now $|x_k x_i| le x_i^2$ for an $i=1,ldots,k$, because $|x_k| le |x_i|$ for all $i=1,ldots,k$. So proceeding in (1) gives the claimed estimate
$$sum_{i=k+1}^n x_i^2lealpha sum_{i=1}^k x_i^2.$$
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
add a comment |
It is quite simple: Note that $|x_i| le |x_k|$ for any $i in {k+1,ldots,n}$. Thus
$$tag{1}sum_{i=k+1}^n x_i^2 le |x_k| sum_{i=k+1}^n |x_i| le alpha |x_k| sum_{i=1}^k |x_i|,$$
where the given condition is used in the last step. Now $|x_k x_i| le x_i^2$ for an $i=1,ldots,k$, because $|x_k| le |x_i|$ for all $i=1,ldots,k$. So proceeding in (1) gives the claimed estimate
$$sum_{i=k+1}^n x_i^2lealpha sum_{i=1}^k x_i^2.$$
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
add a comment |
It is quite simple: Note that $|x_i| le |x_k|$ for any $i in {k+1,ldots,n}$. Thus
$$tag{1}sum_{i=k+1}^n x_i^2 le |x_k| sum_{i=k+1}^n |x_i| le alpha |x_k| sum_{i=1}^k |x_i|,$$
where the given condition is used in the last step. Now $|x_k x_i| le x_i^2$ for an $i=1,ldots,k$, because $|x_k| le |x_i|$ for all $i=1,ldots,k$. So proceeding in (1) gives the claimed estimate
$$sum_{i=k+1}^n x_i^2lealpha sum_{i=1}^k x_i^2.$$
It is quite simple: Note that $|x_i| le |x_k|$ for any $i in {k+1,ldots,n}$. Thus
$$tag{1}sum_{i=k+1}^n x_i^2 le |x_k| sum_{i=k+1}^n |x_i| le alpha |x_k| sum_{i=1}^k |x_i|,$$
where the given condition is used in the last step. Now $|x_k x_i| le x_i^2$ for an $i=1,ldots,k$, because $|x_k| le |x_i|$ for all $i=1,ldots,k$. So proceeding in (1) gives the claimed estimate
$$sum_{i=k+1}^n x_i^2lealpha sum_{i=1}^k x_i^2.$$
answered Nov 21 '18 at 11:06
p4sch
4,760217
4,760217
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
add a comment |
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
Nice, thank you. This line of thought did not occur to me.
– Issou Chankla
Nov 21 '18 at 11:17
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
In general you lose information, if you apply Cauchy-Schwarz. The constants between $|cdot|_1$ and $|cdot|_2$ are also strict. In fact, the key point here is the condition $|x_1| ge ldots ge |x_n|$. (The statement is wrong without this condition!)
– p4sch
Nov 21 '18 at 12:04
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007523%2fl1-inequality-between-ordered-real-numbers-implies-l2-norm-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown